Abstract
The complex formed between the enzyme triose phosphate isomerase (EC 5.3.1.1.), from rabbit and chicken muscle, and its substrate dihydroxyacetone phosphate was studied by 31P n.m.r. Two other enzyme-ligant complexes examined were those formed by glycerol 3-phosphate (a substrate analogue) and by 2-phosphoglycollate (potential transition-state analogue). Separate resonances were observed in the 31P n.m.r. spectrum for free and bound 2-phosphoglycollate, and this sets an upper limit to the rate constant for dissociation of the enzyme-inhibitor complex; the linewidth of the resonance assigned to the bound inhibitor provided further kinetic information. The position of this resonance did not vary with pH but remained close to that of the fully ionized form of the free 2-phosphoglycollate. It is the fully ionized form of this ligand that binds to the enzyme. The proton uptake that accompanies binding shows protonation of a group on the enzyme. On the basis of chemical and crystallographic information [Hartman (1971) Biochemistry 10, 146--154; Miller & Waley (1971) Biochem. J. 123, 163--170; De la Mare, Coulson, Knowles, Priddle & Offord )1972) Biochem. J. 129, 321--331; Phillips, Rivers, Sternberg, Thornton & Wilson (1977) Biochem. Soc. Trans. 5, 642--647] this group is believed to be glutamate-165. On the other hand, the position of the resonance of D-glycerol 3 phosphate (sn-glycerol 1-phosphate) in the enzyme-ligand complex changes with pH, and both monoanion and dianon of the ligand bind, although dianion binds better. The substrate, dihydroxyacetone phosphate, behaves essentially like glycerol 3-phosphate. The experiments with dihydroxy-acetone phosphate and triose phosphate isomerase have to be carried out at 1 degree C because at 37 degrees C there is conversion into methyl glyoxal and orthophosphate. The mechanismof the enzymic reaction and the reasons for rate-enhancement are considered, and aspects of the pH-dependence are discussed in an Appendix.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albery W. J., Knowles J. R. Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry. 1976 Dec 14;15(25):5627–5631. doi: 10.1021/bi00670a031. [DOI] [PubMed] [Google Scholar]
- Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
- Banner D. W., Bloomer A. c., Petsko G. A., Phillips D. C., Wilson I. A. Atomic coordinates for triose phosphate isomerase from chicken muscle. Biochem Biophys Res Commun. 1976 Sep 7;72(1):146–155. doi: 10.1016/0006-291x(76)90972-4. [DOI] [PubMed] [Google Scholar]
- Belasco J. G., Herlihy J. M., Knowles J. R. Critical ionization states in the reaction catalyzed by triosephosphate isomerase. Biochemistry. 1978 Jul 25;17(15):2971–2978. doi: 10.1021/bi00608a005. [DOI] [PubMed] [Google Scholar]
- Belasco J. G., Herlihy J. M., Knowles J. R. Critical ionization states in the reaction catalyzed by triosephosphate isomerase. Biochemistry. 1978 Jul 25;17(15):2971–2978. doi: 10.1021/bi00608a005. [DOI] [PubMed] [Google Scholar]
- Birdsall B., Roberts G. C., Feeney J., Burgen A. S. 31P NMR studies of the binding of adenosine-2'-phosphate to Lactobacillus casei dihydrofolate reductase. FEBS Lett. 1977 Aug 15;80(2):313–316. doi: 10.1016/0014-5793(77)80465-1. [DOI] [PubMed] [Google Scholar]
- Bonsignore A., Leoncini G., Siri A., Ricci D. Kinetic behaviour of glyceraldehyde conversion into methylglyoxal. Ital J Biochem. 1972 Jul-Aug;21(4):179–188. [PubMed] [Google Scholar]
- Browne C. A., Campbell I. D., Kiener P. A., Phillips D. C., Waley S. G., Wilson I. A. Studies of the histidine residues of triose phosphate isomerase by proton magnetic resonance and x-ray crystallography. J Mol Biol. 1976 Jan 25;100(3):319–343. doi: 10.1016/s0022-2836(76)80066-6. [DOI] [PubMed] [Google Scholar]
- Browne C. A., Waley S. G. Studies of triose phosphate isomerase by hydrogen exchange. Biochem J. 1974 Sep;141(3):753–760. doi: 10.1042/bj1410753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruch P., Schnackerz K. D., Chirgwin J. M., Noltmann E. A. Binding studies on rabbit-muscle phosphoglucose isomerase. Eur J Biochem. 1973 Jul 16;36(2):564–568. doi: 10.1111/j.1432-1033.1973.tb02945.x. [DOI] [PubMed] [Google Scholar]
- Burton P. M., Waley S. G. Kinetics of triose phosphate isomerase. Biochim Biophys Acta. 1968 Mar 25;151(3):714–715. doi: 10.1016/0005-2744(68)90028-4. [DOI] [PubMed] [Google Scholar]
- CLIFFE E. E., WALEY S. G. The mechanism of the glyoxalase I reaction, and the effect of ophthalmic acid as an inhibitor. Biochem J. 1961 Jun;79:475–482. doi: 10.1042/bj0790475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell I. A., Lindskog S., White A. I. Proton magnetic resonance studies of histidines in human, rhesus monkey, and bovine carbonic anhydrases. Biochim Biophys Acta. 1977 Oct 13;484(2):443–452. doi: 10.1016/0005-2744(77)90100-0. [DOI] [PubMed] [Google Scholar]
- Campbell I. D., Dobson C. M., Williams J. P. Studies of exchangeable hydrogens in lysozyme by means of Fourier transform proton magnetic resonance. Proc R Soc Lond B Biol Sci. 1975 Jun 17;189(1097):485–502. doi: 10.1098/rspb.1975.0069. [DOI] [PubMed] [Google Scholar]
- Campbell I. D., Jones R. B., Kiener P. A., Richards E., Waley S. C., Wolfenden R. The form of 2-phosphoglycollic acid bound by triosephosphate isomerase. Biochem Biophys Res Commun. 1978 Jul 14;83(1):347–352. doi: 10.1016/0006-291x(78)90438-2. [DOI] [PubMed] [Google Scholar]
- Campbell I. D., Kiener P. A., Waley S. G., Wolfenden R. Triose phosphate isomerase: interactions with ligands studied by [31P]phosphorus nuclear magnetic resonance [proceedings]. Biochem Soc Trans. 1977;5(3):750–752. doi: 10.1042/bst0050750. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Noltmann E. A. The enediolate analogue 5-phosphoarabinonate as a mechanistic probe for phosphoglucose isomerase. J Biol Chem. 1975 Sep 25;250(18):7272–7276. [PubMed] [Google Scholar]
- Chirgwin J. M., Parsons T. F., Noltmann E. A. Mechanistic implications of the pH independence of inhibition of phosphoglucose isomerase by neutral sugar phosphates. J Biol Chem. 1975 Sep 25;250(18):7277–7279. [PubMed] [Google Scholar]
- Cooper R. A. Methylglyoxal formation during glucose catabolism by Pseudomonas saccharophila. Identification of methylglyoxal synthase. Eur J Biochem. 1974 May 2;44(1):81–86. doi: 10.1111/j.1432-1033.1974.tb03459.x. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A., Eisenthal R. Estimation of Michaelis constant and maximum velocity from the direct linear plot. Biochim Biophys Acta. 1978 Mar 14;523(1):268–272. doi: 10.1016/0005-2744(78)90030-x. [DOI] [PubMed] [Google Scholar]
- Corran P. H., Waley S. G. The amino acid sequence of rabbit muscle triose phosphate isomerase. Biochem J. 1975 Feb;145(2):335–344. doi: 10.1042/bj1450335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corran P. H., Waley S. G. The amino acid sequence of rabbit muscle triose phosphate isomerase. FEBS Lett. 1973 Feb 15;30(1):97–99. doi: 10.1016/0014-5793(73)80627-1. [DOI] [PubMed] [Google Scholar]
- DATTA S. P., GRZYBOWSKI A. K. Thermodynamic quantities for the dissociation equilibria of biologically important compounds. 7. The second acid dissociation of glycerol 1-phosphates. Biochem J. 1958 Jun;69(2):218–223. doi: 10.1042/bj0690218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De la Mare S., Coulson A. F., Knowles J. R., Priddle J. D., Offord R. E. Active-site labelling of triose phosphate isomerase. The reaction of bromohydroxyacetone phosphate with a unique glutamic acid residue and the migration of the label to tyrosine. Biochem J. 1972 Sep;129(2):321–331. doi: 10.1042/bj1290321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon H. B. The unreliability of estimates of group dissociation constants. Biochem J. 1976 Mar 1;153(3):627–629. doi: 10.1042/bj1530627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon H. B. The unreliability of estimates of group dissociation constants. Biochem J. 1976 Mar 1;153(3):627–629. doi: 10.1042/bj1530627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furth A. J., Milman J. D., Priddle J. D., Offord R. E. Studies on the subunit structure and amino acid sequence of trisoe phosphate isomerase from chicken breast muscle. Biochem J. 1974 Apr;139(1):11–22. doi: 10.1042/bj1390011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickson J. D., Phillips W. D., Rupley J. A. Proton magnetic resonance study of the indole NH resonances of lysozyme. Assignment, deuterium exchange kinetics, and inhibitor binding. J Am Chem Soc. 1971 Aug 11;93(16):4031–4038. doi: 10.1021/ja00745a035. [DOI] [PubMed] [Google Scholar]
- Gray G. R., Barker R. Studies on the substrates of D-fructose 1,6-diphosphate aldolase in solution. Biochemistry. 1970 Jun 9;9(12):2454–2462. doi: 10.1021/bi00814a010. [DOI] [PubMed] [Google Scholar]
- Griffin J. H., Cohen J. S., Schechter A. N. The assignment of an exchangeable low-field NH proton resonance of ribonuclease A to the active-site histidine-119. Biochemistry. 1973 May 22;12(11):2096–2099. doi: 10.1021/bi00735a012. [DOI] [PubMed] [Google Scholar]
- Hall A., Knowles J. R. The uncatalyzed rates of enolization of dihydroxyacetone phoshate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst. Biochemistry. 1975 Sep 23;14(19):4348–4353. doi: 10.1021/bi00690a032. [DOI] [PubMed] [Google Scholar]
- Hartman F. C. Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase. Biochemistry. 1971 Jan 5;10(1):146–154. doi: 10.1021/bi00777a021. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., LaMuraglia G. M., Tomozawa Y., Wolfenden R. The influence of pH on the interaction of inhibitors with triosephosphate isomerase and determination of the pKa of the active-site carboxyl group. Biochemistry. 1975 Dec 2;14(24):5274–5279. doi: 10.1021/bi00695a007. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., LaMuraglia G. M., Tomozawa Y., Wolfenden R. The influence of pH on the interaction of inhibitors with triosephosphate isomerase and determination of the pKa of the active-site carboxyl group. Biochemistry. 1975 Dec 2;14(24):5274–5279. doi: 10.1021/bi00695a007. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., Ratrie H., 3rd Apparent equivalence of the active-site glutamyl residue and the essential group with pKalpha 6.0 in triosephosphate isomerase. Biochem Biophys Res Commun. 1977 Jul 25;77(2):746–752. doi: 10.1016/s0006-291x(77)80041-7. [DOI] [PubMed] [Google Scholar]
- Hopper D. J., Cooper R. A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J. 1972 Jun;128(2):321–329. doi: 10.1042/bj1280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. N., Wolfenden R. Changes in absorption spectrum and crystal structure of triose phosphate isomerase brought about by 2-phosphoglycollate, a potential transition state analogue. J Mol Biol. 1970 Jan 14;47(1):93–100. doi: 10.1016/0022-2836(70)90404-3. [DOI] [PubMed] [Google Scholar]
- Jones R. B., Waley S. G. Spectrophotometric studies on the interaction between triose phosphate isomerase and inhibitors. Biochem J. 1979 Jun 1;179(3):623–630. doi: 10.1042/bj1790623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mel'nichenko I. V., Kozlova N. Ia, Iasnikov A. A. Svoistva substratov al'dolaznoi reaktsii i poiski modelei al'dolazy. Biokhimiia. 1969 Jul-Aug;34(4):699–705. [PubMed] [Google Scholar]
- Miller J. C., Waley S. G. Amino acid sequences around the cysteine residues of rabbit muscle triose phosphate isomerase. Biochem J. 1971 Apr;122(2):209–218. doi: 10.1042/bj1220209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. C., Waley S. G. The active centre of rabbit muscle triose phosphate isomerase. The site that is labelled by glycidol phosphate. Biochem J. 1971 Jun;123(2):163–170. doi: 10.1042/bj1230163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel D. J., Woodward C. K., Bovey F. A. Proton nuclear magnetic resonance studies of ribonuclease A in H 2 O. Proc Natl Acad Sci U S A. 1972 Mar;69(3):599–602. doi: 10.1073/pnas.69.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips D. C., Rivers P. S., Sternberg M. J., Thornton J. M., Wilson I. A. An analysis of the three-dimensional structure of chicken triose phosphate isomerase. Biochem Soc Trans. 1977;5(3):642–647. doi: 10.1042/bst0050642. [DOI] [PubMed] [Google Scholar]
- Plaut B., Knowles J. R. pH-dependence of the triose phosphate isomerase reaction. Biochem J. 1972 Sep;129(2):311–320. doi: 10.1042/bj1290311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds S. J., Yates D. W., Pogson C. I. Dihydroxyacetone phosphate. Its structure and reactivity with -glycerophosphate dehydrogenase, aldolase and triose phosphate isomerase and some possible metabolic implications. Biochem J. 1971 Apr;122(3):285–297. doi: 10.1042/bj1220285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddle V., Lorenz F. W. Nonenzymic, polyvalent anion-catalyzed formation of methylglyoxal as an explanation of its presence in physiological systems. J Biol Chem. 1968 May 25;243(10):2718–2724. [PubMed] [Google Scholar]
- Robillard G., Shulman R. G. High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. I. The hydrogen bonded protons of the "charge relay" system. J Mol Biol. 1974 Jul 5;86(3):519–540. doi: 10.1016/0022-2836(74)90178-8. [DOI] [PubMed] [Google Scholar]
- Shaw P. J., Muirhead H. Crystallographic structure analysis of glucose 6-phosphate isomerase at 3-5 A resolution. J Mol Biol. 1977 Jan 25;109(3):475–485. doi: 10.1016/s0022-2836(77)80025-9. [DOI] [PubMed] [Google Scholar]
- Shaw P. J., Muirhead H. The active site of glucose phosphate isomerase. FEBS Lett. 1976 May 15;65(1):50–55. doi: 10.1016/0014-5793(76)80619-9. [DOI] [PubMed] [Google Scholar]
- Waley S. G. Refolding of triose phosphate isomerase. Biochem J. 1973 Sep;135(1):165–172. doi: 10.1042/bj1350165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb M. R., Standring D. N., Knowles J. R. Phosphorus-31 nuclear magnetic resonance of dihydroxyacetone phosphate in the presence of triosephosphate isomerase. The question of nonproductive binding of the substrate hydrate. Biochemistry. 1977 Jun 14;16(12):2738–2741. doi: 10.1021/bi00631a023. [DOI] [PubMed] [Google Scholar]
- Wolfenden R. Binding of substrate and transition state analog to trisephosphate isomerase. Biochemistry. 1970 Aug 18;9(17):3404–3407. doi: 10.1021/bi00819a018. [DOI] [PubMed] [Google Scholar]