Skip to main content
Arthroplasty Today logoLink to Arthroplasty Today
. 2025 Feb 11;32:101614. doi: 10.1016/j.artd.2025.101614

Fourth-generation Ceramic Head Fracture in Total Hip Arthroplasty: A Case Report and Literature Review

Clark Yin a, Lauren Eberhardt b, Matthew Cederman b,, Henry Haley a, Andrew Steffenmeier a, Mark Karadsheh a
PMCID: PMC11869593  PMID: 40026482

Abstract

Ceramics are used in total hip arthroplasty due to inherent wettability and low wear rates, but fracture risk is a known complication. Rates as high as 13.4% were reported in the past, yet as low as 0.02% in newer generations. Howard et al. reported a fracture rate of 0.009% for fourth-generation ceramic heads. We present a case report of a 69-year-old male with a BMI of 40.01 kg/m2 who suffered a fracture of a 36-mm ceramic femoral head with pseudoacetabular involvement of the polyethylene liner. This occurred 2 years and 3 months after his primary surgery after a 4-foot fall off of a ladder. The patient underwent revision of his total hip arthroplasty with arthroplasty of the polyethylene liner and femoral head component without stem explantation.

Keywords: Total hip arthroplasty, Ceramic femoral head fracture, BIOLOX Delta, Complications in orthopaedics, Traumatic fall

Introduction

Bearing choice is a crucial aspect of total hip arthroplasty (THA), consisting of 4 configurations: (1) metal-on-polyethylene, (2) metal-on-metal, (3) ceramic-on-ceramic, and (4) ceramic-on-polyethylene. Ceramic bearings were introduced to reduce wear, limit osteolysis, and improve longevity of hip arthroplasties [1,2]. First-generation fracture rates were up to 13.4%, while fourth-generation ceramics rates were as low as 0.001% [[3], [4], [5], [6]]. Named the BIOLOX Delta ceramic (CeramTec, Plochingen, Baden-Württemberg, Germany), this fourth-generation ceramic commercialized in 2000 is composed of alumina, zirconia, strontium oxide, and chromium oxide [[7], [8], [9], [10]].

With advancements in material composition and manufacturing techniques, each subsequent generation of the BIOLOX system has aimed to enhance wear resistance, fracture toughness, and minimize overall complications. First-generation implants were characterized by larger material grains and less refined manufacturing processes. The introduction of hot isostatic pressing, along with a reduction in grain size in third-generation implants, resulted in a significant decrease in implant fracture rates and an almost 100% 10-year survival rate. The latest generation, BIOLOX Delta, incorporates a zirconia-alumina composite, further refining the design and performance of the implant [11,12].

Despite these improvements, fourth-generation ceramic femoral head fractures, albeit rare, still occur and can result in damage to the trunnion, acetabular shell, or femoral stem. The main risk factors for ceramic head fractures are obesity, high activity level, trauma, small ball diameter, poor manufacturing techniques, and poor surgical technique [13].

This case report describes a traumatic fracture of a BIOLOX Delta ceramic femoral head 2 years and 3 months after the index surgery. The intent to publish was discussed with the patient and written informed consent was obtained.

Case history

A 67-year-old male underwent left primary THA for severe hip osteoarthritis. The patient had several medical comorbidities including obesity (body mass index 39.3 kg/m2), chronic obstructive pulmonary disease, history of deep vein thrombosis, hypertension, and Parkinson’s disease. Left THA was performed via a posterior approach without complications. The implants consisted of a BIOLOX Delta ceramic femoral head with 36 mm diameter and 5 mm length, Stryker polyethylene 36 mm liner, Stryker Accolade II size 7 127o stem, and a Stryker Trident 56 mm acetabular shell (Stryker Corporation, Kalamazoo, MI, 49002; www.stryker.com). At 2 years and 3 months after the index procedure, the patient sustained a 4-foot traumatic fall from a ladder onto the contralateral hip and buttock. He presented to his family practitioner 1 week later complaining of back pain and ambulating with a limp. Radiographs demonstrated ceramic head fracture with several fragments extruded to the region of the greater trochanter, read as an “atypical appearance involving the femoral head component which may be related to revision or hardware failure” (Fig. 1). On radiographs, the femoral stem and acetabular component remained in acceptable position without evidence of osteolysis or failure. He presented to an outside hospital emergency department that same day for low back pain and was subsequently discharged with a diagnosis of lumbar radiculopathy.

Figure 1.

Figure 1

AP left hip showing obvious deformity of the femoral head, well-positioned acetabular cup, and stable appearing femoral stem. AP, anteroposterior.

It was not until the initial surgeon (senior author, M. S. K.) was contacted by the patient’s primary care physician that the severity of the condition was recognized, prompting the patient’s admission to our hospital, 9 days after the injury. Physical examination revealed intact neurovascular status and a well-healed posterior approach surgical scar without signs of infection. The patient denied pain with passive range of motion of the hip, antecedent hip or thigh pain, clicking, or stiffness; no other injuries were present. He was kept nonweight-bearing on the affected side and indicated for revision surgery.

Surgical exposure of the hip revealed 2 large fragments of the ceramic femoral head in the acetabular cup. Several smaller fragments of ceramic material extruded from a defect in the capsule into the greater trochanteric bursal area with surrounding areas of metallosis (Fig. 2). All detected fragments were removed and the hip was thoroughly irrigated with copious sterile saline solution, mineral oil, ultrasound gel, and dilute betadine solution to aid in removal of fragments (Fig. 3). An extensive synovectomy was performed to remove any remaining fragments and prevent the risk of third body wear.

Figure 2.

Figure 2

Intraoperative photograph demonstrating metallosis and scattered debris.

Figure 3.

Figure 3

The femoral head was broken into 2 major fragments with several smaller pieces. The polyethylene liner was being eroded by the exposed trunnion but remained intact.

After the particles were removed, the polyethylene liner and acetabular cup were evaluated. The polyethylene liner showed signs of damage from weight-bearing, with the exposed trunnion articulating directly with the liner, effectively acting as a pseudoacetabulum. The acetabular metal shell remained intact. Appearing as a small, slightly angled protrusion at the head-neck interface, the trunnion, alongside the femoral stem, showed no visible defects. Given the stability and proper positioning of the stem, along with the potential morbidity associated with explanting it, the femoral stem was not revised. Provided this increased risk, and no macroscopic damage but unknown microscopic trunnion damage, conservative measures were taken by placing a BIOLOX taper sleeve trunnion adapter alongside a new polyethylene liner was inserted and was implanted with a BIOLOX Delta 36 mm (−2.5 mm length) ceramic head. The hip was reduced, concentric and stable without impingement. The patient’s wound was irrigated and closed. Patient was weight-bearing as tolerated, transferred to the floor, and discharged home the following morning. Postoperative radiographs were satisfactory (Fig. 4). The patient had an uneventful recovery, evaluated at 2 and 6 weeks postoperatively.

Figure 4.

Figure 4

AP pelvis radiograph postoperative day. AP, anteroposterior.

Follow-up

The patient was lost to follow-up initially after the postoperative timeframe but was seen more than 3 years later. At this time, he reports no complications or complaints from the procedure and has been ambulating since his postoperative recovery period. Physical examination reveals full range of motion with no associated pain. Radiographs indicated revision hardware positioning to be well maintained with no evidence of loosening or recurrence of implant fracturing (Fig. 5).

Figure 5.

Figure 5

AP pelvis and lateral left hip radiographs at 3 years of follow-up show components have maintained adequate positioning and no evidence of hardware loosening. AP, anteroposterior.

Discussion

Ceramic bearing fractures are a known but rare complication. One of the first reported BIOLOX Delta ceramic femoral head fractures reported in the literature occurred in a 45-year-old female after a traumatic event [14]. This case report adds to the existing literature of ceramic head fractures, as described in Table 1 [[14], [15], [16],[18], [19], [20],23], with a ceramic femoral head fracture 2 years postoperatively, reporting a detailed description, photographs of intraoperative findings, and management.

Table 1.

Prior case reports demographics, index, and revision procedures.

Index procedure
Revision procedure
Authors Year Age Sex BMI Reason for index surgery Approach Articulation Acetabular components Head size (mm) Femoral components Time from index surgery (mo) Activity leading to revision Articulation Head size (mm) Revision components Retained components
Hungerford et al. [15] 2023 68 F NR NR NR CoC 48 mm acetabular shell, 18.8o anteversion, 66o inclination 28 Stryker stem, size #7 204 Atraumatic NR NR Stryker BIOLOX dual mobility vitt E 42 mm/28 mm/E NR
Patetta et al. [16] 2022 45 M NR Avascular necrosis Posterolateral NR MDM, 28 mm inner diameter, 48 mm outer diameter, cobalt-chromium liner, 54 mm titanium acetabular shell 28 Stryker Accolade 2 stem, size #6, 132o neck angle 54 Ground-level fall CoP 28 BIOLOX delta 28 + 0, Stryker universal titanium taper adapter, restoration MDM poy liner NR
Duensing et al. [17] 2021 83 M 26.7 Primary hip osteoarthritis Standard posterior NR 56 mm Trident PSL shell, 32o inclination 40 Stryker Accolade 2 stem, size #6, varus neck angle 60 Atraumatic community ambulation NR NR Modular splined-tapered revision stem (RECLAIM Modular revision stem, DePuy) NR
Valentini et al. [18] 2020 58 M NR Revision for metallosis and foreign body reaction after primary total hip replacement for hip osteoarthritis NR CoP 36 mm inner diameter, 54 mm acetabular shell, 32o anteversion, 44o inclination 36 DePuy S-ROM total hip system 72 Skiing NR NR NR NR
Rankin et al. [19] 2019 52 M 26 Primary hip osteoarthritis NR CoP 32 mm inner diameter, 52 mm Trident Tritanium shell 32 Stryker cemented V40 Exeter stem, size #1, 50 mm offset 8 Traumatic fall with unremarkable radiographs, 1 month later he noticed a sudden sharp pain and sensation of grinding following swimming CoC 32 Cement-in-cement revision with a new 50 mm offset, no. 1 Exeter stem Metal shell
Kocadal et al. [20] 2019 52 F 34.3 Hx femoral osteotomy 35 years prior from developmental dysplasia NR CoC 52 mm Trident Tritanium shell, 14o anteversion, 43o inclination 32 NR 192 Atraumatic CoC 32 NR Cup, stem, and the ceramic liner
Pomeroy et al. [21] 2015 41 M 26.6 Primary hip osteoarthritis Anterolateral CoP 54 mm G7 high wall shell 32 Biomet Taperloc 13 × 146 high offset type 1 < 1 Atraumatic. Reported to 6-week f/u appointment and radiographs showed fracture of the ceramic head CoC 32 NR Stem and cup
Tucker and Acharya [22] 2014 68 M NR Primary hip osteoarthritis Posterior CoP 28 mm inner diameter, 58 mm Zimmer acetabular shell 28 Zimmer CPT size #3, 7 mm neck, 6o taper 168 Atraumatic CoC 36 Zimmer CPT size #1 stem, 36 mm femoral head, 60 mm/36 mm BIOLOX shell NR
Heiner and Mahoney [14] 2014 45 F NR Osteoarthritis secondary to femoral dysplasia NR CoP 35 mm inner diameter, 52 mm Pinnacle AltrX acetabular shell 36 DePuy S-ROM total hip system 18 Bicycle accident occurred 2 months prior to presentation CoP NR Same company, design, and size as index NR

BMI, body mass index; CoC, ceramic-on-ceramic; CoP, ceramic-on-polyethylene; F, female; f/u, follow-up; M, male; NR, not reported; MDM, modular dual mobility.

Prior case reports and series have shown traumatic and atraumatic fracturing of BIOLOX ceramic heads over time, ranging from immediately following a ground-level fall to degeneration over the course of years [16,19,23]. In a similar case study, a patient with a THA fitted with a 32 mm BIOLOX ceramic head fell at 8 months postoperatively; he ambulated immediately afterward and imaging obtained by his surgeon within 1 week of the fall were unremarkable [19]. One month later, the patient returned to the emergency department unable to ambulate due to sharp pain, resulting in a revision THA to replace the multifragmented head [19]. Similarly, a 45-year-old female suffered a bicycle accident 2 months prior to presentation, resulting in fracture of the 36 mm BIOLOX head [14]. These cases of delayed ceramic head fragmentation are demonstrative of “slow crack growth” or “subcritical crack growth” phenomena [14,19].

As the generations of ceramic femoral implants continue to become more well refined, its associated benefits over that of its metallic counterparts become apparent. With decreased wear of the polyethylene liner and high wettability creates a favorable wear environment; therefore, utilization of a ceramic head was chosen over that of a metal head implant [11]. With the primary concern surrounding metal femoral head implants being that of debris generation from the articular surface resulting in joint failure [12,24].

The patient in the current case had a unique mechanism of injury. He fell off a ladder approximately 4 feet and landed on the contralateral hip. Another case of unusual impact occurred with a revision THA using a 40 mm BIOLOX head; the head split in 2 upon a single blow of impaction, hypothesized to be the result of unseen trunnion damage or trunnionosis [23]. Patetta et al. reported a case of a 28 mm BIOLOX head fracture following a ground-level fall [16]. The patient had an uncomplicated right THA and developed insidious onset of right hip pain 28 months after surgery and did not follow-up for a period of 4.5 years. At which point, he fell and was unable to ambulate [16]. Other cases demonstrated head fragmentation 1 and 2 decades postoperatively following the sudden onset of atraumatic hip pain, hypothesized to have resulted from acetabular cup angulation or hybrid articulation [5,15].

Prior review articles examining ceramic head implants with associated patient demographics, component compositions, accompanying complications, and reasons for revision are noted in Table 2, Table 3, Table 4. Lucchini et al., in a multicenter retrospective study of 29,495 THA, reported only 2 ceramic femoral head fractures at a fracture rate of 0.007%, within the range (0.001%-0.009%) reported in the literature for fourth-generation ceramics [26,54]. These 2 fractures occurred with 36 mm BIOLOX Delta femoral head components. Due to the multifragmentation, a centralized fracture origin could not be determined. However, the authors hypothesized that these occurred in a multistage crack growth mechanism from damage sustained to the head-neck interface, presenting a potential area of redesign for future ceramic implantation generations [54]. Howard et al. reported the largest independent study of CoC fractures to date, noting a 0.009% fracture rate, with smaller fractured heads and patients with high body mass index [42]. These associated patient and implant parameters can be used to evaluate overall risk and likelihood of a ceramic fracture in the future as well as develop a differential diagnosis for postoperative THA patients with hip pain.

Table 2.

Prior large review papers on ceramic total hip arthroplasty–patient demographics.

Authors Year Type of study Articulation Total # of hips Patients (M/F/total) Age (y)
Mean ± SD [minimum-maximum]
BMI
Mean ± SD [minimum-maximum]
Follow-up (mo)
Mean ± SD [minimum-maximum]
Park et al. [25] 2023 Prospective therapeutic, level II CoC 85 44/27/71 25.9 [16-29] 22.9 [17-38.8] 123.6 [2-156]
Lucchini et al. [26] 2022 Multicenter retrospective CoC 29,495 11,432/14,969/26,401 65.8 [11-96] NR 62.4 [1.2-187.2]
Blumenfeld et al. [27] 2022 Randomized control trial CoC 28 104 57/47/104 56.9 ± 8.99 30.7 ± 6.6 117.6 ± 15.48
CoC 36 81 40/41/81 59.5 ± 9.35 29.1 ± 5.9 124.8 ± 8.52
Logroscino et al. [28] 2022 Retrospective COM Proxima Stem 19 10/9/19 71.97 ± 9.39 27.91 ± 6.5 97 ± 16.15
COM Metha 25 17/8/25 64 ± 9.51 27.78 ± 3.2 131.6 ± 10.05
Alshammari et al. [29] 2023 Retrospective CoC 273 69/165/243 50 [14-71] NR 144 [120-216]
McCarthy et al. [11] 2022 Retrospective Fourth-generation CoC 117 NR NR NR NR
Mixed-generation CoC 3 NR NR NR NR
Van Loon et al. [30] 2021 Retrospective CoP 27 6/21/27 64.2 27.6 NR
CoC 34 12/22/34 55.7 26.9 NR
Kim et al. [31] 2021 Multicenter retrospective, level III CoC 54 28/26/54 62 ± 15.8 24 ± 14.2 76 ± 14.2
Davis et al. [32] 2021 Multicenter prospective CoC 178 60/115/175 63.4 ± 9 [27-75] 28.3 ± 5 [19-44.4] 84
Castagnini et al. [33] 2020 Multicenter retrospective Delta head, Forte liner 346 163/183/346 65.4 NR 76.8
Delta head, Delta liner 21,874 9384/12,490/21,874 66 NR 46.8
Hallan et al. [6] 2020 Multicenter retrospective CoP 5912 NR 63 [11-98] NR NR
CoC 1989 NR 61 [17-95] NR NR
Henri Bauwens et al. [34] 2020 Retrospective CoC 116 55/51/106 55.3 ± 11.3 [23.3-76.8] 25.8 ± 4.4 [17.7-39.3] 31.9 ± 5.5 [24-42.5]
Lee and Yoon [35] 2020 Retrospective CoC 133 83/50/129 55.5 ± 11.3 23.8 ± 3.8 50.4 ± 22.8
Lee et al. [36] 2019 Prospective CoC 86 44/28/72 25.9 [16-29] 22.6 [13-38.8] NR
Cho et al. [37] 2019 Retrospective CoC 263 175/67/242 53.6 [23-84] 23.8 [16.6-32.2] 62.4 [24-78]
Kim et al. [38] 2019 Multicenter retrospective CoC 292 123/111/234 50.5 [18-83] 23.5 [16.8-37.9] 66 [60-88.8]
Solarino et al. [39] 2019 Retrospective CoC 23 NR NR NR NR
Blakeney et al. [40] 2018 Retrospective CoC 276 96/150/246 53.8 ± 10.3 [16-73] 27.2 ± 4.9 [16.2-41.7] 66.5 ± 6.9 [48-78.5]
Lim et al. [41] 2018 Retrospective CoC 749 315/352/667 54.2 ± 14.7 [16-88] 24.2 ± 3.2 [15.4-37.7] 78 [60-84]
Howard et al. [42] 2017 Multicenter retrospective CoC 79,442 NR NR NR NR
Kim et al. [43] 2017 Retrospective CoC 334 143/134/227 48.2 ± 11.3 28.9 ± 10 [27.2-34.6] 157.2 [120-168]
Salo et al. [44] 2017 Retrospective CoC 336 110/191/301 61 [29-78] 28.5 [19-53] 25.6 [16-41]
Lee et al. [45] 2017 Prospective CoC 286 144/108/252 49.7 [16-83] 24.6 [17-37.7] 66.5 [60-84]
Hamilton et al. [46] 2015 Randomized control trial CoC 28 177 90/87/177 56.4 ± 10.6 30 ± 6.3 62.4 ± 19.2
CoC 36 168 91/77/168 57.3 ± 11 29 ± 6.4 64.8 ± 15.6
Baek et al. [47] 2015 Retrospective CoC 100 47/44/91 55 ± 14 23 ± 3 60 ± 3.6 [60-72]
Tai et al. [48] 2015 Retrospective CoC 206 77/118/195 69 [38.1-93] NR NR
Varnum et al. [49] 2015 Multicenter retrospective CoC 1773 938/835/1773 NR NR NR
McDonnell et al. [50] 2013 Retrospective CoC 208 67/141/208 59 [22-84] 27.5 [19-50] 21 [12-35]
Cai et al. [51] 2012 Randomized control trial CoC 51 25/18/43 42.1 ± 10.5 [21-60] 24.6 ± 3.9 [17.9-33.1] 39.7 [36-44]
CoP 62 27/23/50 42 ± 10.6 [20-59] 24.8 ± 4.1 [18.1-36.7] 40.3 [36-45]
Hamilton et al. [52] 2010 Multicenter randomized control trial CoC 177 90/87/177 56.4 NR 31.1 [21-49]
CoP 87 47/40/87 57.3 NR 31.5 [21-49]
Lombardi et al. [53] 2010 Randomized control trial CoC 64 35/29/64 57 [33-76] 29.9 73 [26-108]

BMI, body mass index; CoC, ceramic-on-ceramic; CoP, ceramic-on-polyethylene; F, female; M, male; NR, not reported; SD, standard deviation.

Table 3.

Prior large review papers on ceramic total hip arthroplasty–preoperative diagnosis and implant information.

Authors Year Articulation Total # of hips Preoperative diagnosis Approach Femoral head Femoral stem Acetabular cup Inclination (o)
Mean ± SD [minimum-maximum]
Anteversion (o)
Mean ± SD [minimum-maximum]
Park et al. [25] 2023 CoC 85 Osteonecrosis: 55
Femoral neck fracture: 2
Secondary arthritis: 26
Tumor: 2
Posterolateral: 85 NR S-ROM: 1
Corail: 64
Bencox II: 3
Bencox ID: 2
Taperloc: 15
Pinnacle: 67
ABT Exceed: 15
Bencox: 3
40.8 [29-49] 25 [11-39]
Lucchini et al. [26] 2022 CoC 29,495 Osteoarthritis: 21,472
Rheumatoid arthritis: 206
Osteonecrosis: 1593
Dysplasia: 22,121
Femoral neck fracture: 3746
Other: 265
NR NR NR NR NR NR
Blumenfeld et al. [27] 2022 CoC 28 104 Osteoarthritis: 94
Osteonecrosis: 2
Post-traumatic arthritis: 4
Other: 4
NR BIOLOX Delta 28: 104 NR Pinnacle: 104 NR NR
CoC 36 81 Osteoarthritis: 76
Osteonecrosis: 1
Post-traumatic arthritis: 1
Other: 3
NR BIOLOX Delta 36: 81 NR Pinnacle: 81 NR NR
Logroscino et al. [28] 2022 COM Proxima Stem 19 Osteoarthritis: 18
Dysplasia: 1
Posterolateral – 19 BIOLOX Delta 36: 19 Proxima – 19 Pinnacle – 19 47.91 [40.2-60.1] 13.98 [4.42-22.33]
COM Metha 25 Osteoarthritis: 17
Dysplasia: 8
Direct lateral: 25 BIOLOX Delta 36: 25 NR Pinnacle: 25 52.14 [42.1-58.2] 6.49 [0.82-17.08]
Alshammari et al. [29] 2022 CoC 273 Osteoarthritis: 190
Congenital hip dislocation: 29
Rheumatoid arthritis: 13
Osteonecrosis: 17
JRA: 6
Other: 18
Direct lateral: 175
Posterior: 98
BIOLOX Delta 28: 50
BIOLOX Delta 32: 26
BIOLOX Delta 36: 197
TRI-Lock: 171
S-ROM: 64
Prodigy: 20
Corail: 15
Summit: 3
Pinnacle: 273 39.2 ± 7.1 [20.6-58.1] 14.9 ± 3.5 [5.9-24.3]
McCarthy et al. [11] 2022 Fourth-generation CoC 117 NR NR NR S-ROM: 80
Corail: 35
Charnley: 2
Pinnacle: 116
Duraloc: 1
NR NR
Mixed-generation CoC 3 NR NR NR S-ROM: 1
Charnley: 1
Exeter: 1
Trident: 2
Plasmacup-SC: 1
NR NR
Van Loon et al. [30] 2021 CoP 27 Osteoarthritis: 23
Other: 4
NR NR NR NR NR NR
CoC 34 Osteoarthritis: 19
Other: 15
NR NR NR NR NR NR
Kim et al. [31] 2021 CoC 54 Osteoarthritis: 14
Osteonecrosis: 18
Femoral neck fracture: 14
Other: 9
Direct lateral: 8
Anterolateral: 8
Posterolateral: 38
NR NR NR NR NR
Davis et al. [32] 2021 CoC 178 Osteonecrosis: 150
Osteonecrosis: 17
Dysplasia: 11
Anterolateral: 70
Posterolateral: 64
Posterior: 44
NR R3: 178 R3: 178 NR NR
Castagnini et al. [33] 2020 Delta head, Forte liner 346 NR NR NR NR NR NR NR
Delta head, Delta liner 21,874 NR NR NR NR NR NR NR
Hallan et al. [6] 2020 CoP 5912 NR NR NR NR NR NR NR
CoC 1989 NR NR NR NR NR NR NR
Henri Bauwens et al. [34] 2020 CoC 116 Osteoarthritis: 105
Dysplasia: 5
Femoral neck fracture: 4
Septic hip sequelae: 2
Anterior: 116 NR Targos: 116 Cargos HAP: 116 44.9 ± 5 [30.6-60] 16.4 ± 3.7 [9-30]
Lee and Yoon [35] 2020 CoC 133 Osteoarthritis: 16
Rheumatoid arthritis: 6
Osteonecrosis: 75
Dysplasia: 14
Femoral neck fracture: 13
LCP Sequelae: 15
AS: 3
Direct lateral: 133 BIOLOX Delta 36: 133 TRI-Lock: 50
Summit: 83
NR 42.3 ± 5.3 24.2 ± 12
Lee et al. [36] 2019 CoC 86 Osteonecrosis: 55
Femoral neck fracture: 2
Secondary arthritis: 27
Other: 2
Posterolateral: 86 NR NR NR NR NR
Cho et al. [37] 2019 CoC 263 Osteoarthritis: 59
Osteonecrosis: 166
Femoral neck fracture: 25
Septic hip sequelae: 7
LCP sequelae: 6
Posterolateral: 79
Modified 2 incision: 184
NR M/L Taper: 126
Fitmore: 137
Continuum: 263 37.39 [20.6-49.5] 20.7 [4.8-36.1]
Kim et al. [38] 2019 CoC 292 Osteoarthritis: 54
Rheumatoid arthritis: 9
Osteonecrosis: 155
Dysplasia: 47
Septic hip sequelae: 8
LCP sequelae: 12
Post-traumatic arthritis: 5
AS: 2
NR BIOLOX Delta 32: 43
BIOLOX Delta 36: 249
Bencox: 292 Bencox: 292 42.1 ± 6.5 [28-58] 16.2 ± 6 [4-37]
Solarino et al. [39] 2019 CoC 23 NR Direct lateral: 23 BIOLOX Delta 32: 3
BIOLOX Delta 36: 18
BIOLOX Delta 40: 1
NR NR NR NR
Blakeney et al. [40] 2018 CoC 276 Osteoarthritis: 222
Osteonecrosis: 16
Dysplasia: 21
LCP sequelae: 7
Post-traumatic arthritis: 4
Inflammatory arthritis: 6
NR NR NR NR NR NR
Lim et al. [41] 2018 CoC 749 Osteoarthritis: 325
Osteonecrosis: 369
Femoral neck fracture: 35
Inflammatory arthritis: 20
Anterolateral: 749 BIOLOX Delta 32: 227
BIOLOX Delta 36: 472
Bencox: 749 Bencox: 749 NR NR
Howard et al. [42] 2017 CoC 79,442 NR NR NR NR NR NR NR
Kim et al. [43] 2017 CoC 334 Rheumatoid arthritis: 4
Osteonecrosis: 124
Dysplasia: 115
Femoral neck fracture: 6
Septic hip sequelae: 15
Ethanol associated: 69
Idiopathic steroid use: 44
Posterolateral: 277 BIOLOX Delta 32: 51
BIOLOX Delta 36: 283
Proxima: 334 Pinnacle: 344 42 [35-47] 21 [17-25]
Salo et al. [44] 2017 CoC 336 Osteoarthritis: 287
Dysplasia: 17
Post-traumatic arthritis: 26
Other: 6
Posterior: 336 BIOLOX Delta 32: 12
BIOLOX Delta 36: 222
BIOLOX Delta 40: 102
S-ROM: 13
Corail: 16
Summit: 101
M/L Taper: 184
Bimetric: 8
Anthology: 6
CDH: 3
Pinnacle: 130
ABT Exceed: 11
Continuum: 184
R3: 6
NR NR
Lee et al. [45] 2017 CoC 286 Osteoarthritis: 28
Rheumatoid arthritis: 1
Osteonecrosis: 165
Femoral neck fracture: 6
AS: 6
Secondary arthritis: 80
Modified 2 incision: 286 BIOLOX Delta 32: 247
BIOLOX Delta 36: 39
Corail: 286 Pinnacle: 286 41.5 ± 4.1 [25-54] 26.4 ± 7.2 [10-46]
Hamilton et al. [46] 2015 CoC 28 177 Osteoarthritis: 155
Osteonecrosis: 12
Dysplasia: 5
Post-traumatic arthritis: 5
Other: 2
NR NR NR Pinnacle: 286 NR NR
CoC 36 168 Osteoarthritis: 147
Osteonecrosis: 13
Dysplasia: 4
Post-traumatic arthritis: 2
NR NR NR Pinnacle: 168 NR NR

AS, Ankylosing spondylitis; CoC, ceramic-on-ceramic; CoP, ceramic-on-polyethylene; JRA, Juvenile rheumatoid arthritis; LCP, Legg-Calve-Perthes disease; NR, not reported; SD, standard deviation.

Table 4.

Prior large review papers on ceramic total hip arthroplasty–complications and revisions.

Authors Year Articulation Total # of hips Reason for revisions Complications
Park et al. [25] 2023 CoC 85 Infection: 1
Periprosthetic fracture: 1
NR
Lucchini et al. [26] 2022 CoC 29,495 NR Ceramic head fracture: 2
Blumenfeld et al. [27] 2022 CoC 28 104 NR NR
CoC 36 81 NR NR
Logroscino et al. [28] 2022 COM Proxima Stem 19 NR NR
COM Metha 25 NR NR
Alshammari et al. [29] 2022 CoC 273 Squeaking: 1
Infection: 2
Stem loosening: 1
Stem fracture: 2
NR
McCarthy et al. [11] 2022 Fourth-generation CoC 117 NR NR
Mixed-generation CoC 3 NR NR
Van Loon et al. [30] 2021 CoP 27 NR NR
CoC 34 NR NR
Kim et al. [31] 2021 CoC 54 NR NR
Davis et al. [32] 2021 CoC 178 Total revision: 3 NR
Castagnini et al. [33] 2020 Delta head, Forte liner 346 NR NR
Delta head, Delta liner 21,874 NR Ceramic head fracture: 3
Hallan et al. [6] 2020 CoP 5912 NR NR
CoC 1989 NR NR
Henri Bauwens et al. [34] 2020 CoC 116 NR Psoas impingement: 2
Squeaking: 3
Greater trochanter fracture: 3
Femoral stem wrong way: 1
Lee and Yoon [35] 2020 CoC 133 NR NR
Lee et al. [36] 2019 CoC 86 NR NR
Cho et al. [37] 2019 CoC 263 Infection: 1
Stem loosening: 1
Liner fracture: 1
Recurrent dislocation: 1
NR
Kim et al. [38] 2019 CoC 292 Stem loosening: 2
Periprosthetic fracture: 2
Dislocation: 1
Solarino et al. [39] 2019 CoC 23 NR NR
Blakeney et al. [40] 2018 CoC 276 Infection: 1
Periprosthetic fracture: 1
Acetabular migration: 1
Sciatic neuropathy: 1
Lim et al. [41] 2018 CoC 749 NR NR
Howard et al. [42] 2017 CoC 79,442 NR Ceramic head fracture: 7
Kim et al. [43] 2017 CoC 334 Recurrent dislocation: 1 NR
Salo et al. [44] 2017 CoC 336 Infection: 1
Recurrent dislocation: 1
Periprosthetic fracture: 1
NR
Lee et al. [45] 2017 CoC 286 Liner fracture: 1
Periprosthetic fracture: 1
NR
Hamilton et al. [46] 2015 CoC 28 177 Infection: 2
Liner fracture: 1
Stem loosening: 2
Dislocation: 6
CoC 36 168 Infection: 1
Liner fracture: 1
Stem loosening: 2
Dislocation: 3
Baek et al. [47] 2015 CoC 100 NR NR
Tai et al. [48] 2015 CoC 206 Periprosthetic fracture: 2 Pulmonary embolism: 1
Dislocation: 1
Varnum et al. [49] 2015 CoC 1773 NR Ceramic head fracture: 1
McDonnell et al. [50] 2013 CoC 208 NR Dislocation: 1
Cai et al. [51] 2012 CoC 51 Infection: 1
Recurrent dislocation: 1
NR
CoP 62 Recurrent dislocation: 1
Leg length discrepancy: 1
Acetabular migration: 1
NR
Hamilton et al. [52] 2010 CoC 177 Total revision: 4 Insertional chipped liner: 2
Femoral component loosening: 3
Intraoperative femur fracture: 5
Fracture: 2
Wound problem: 9
Deep infection: 2
Acetabular liner fracture: 2
Nerve damage: 1
Dislocation: 5
CoP 87 Total revision: 2 Intraoperative femur fracture: 1
Wound problem: 2
Dislocation: 4
Lombardi et al. [53] 2010 CoC 64 NR Ceramic head fracture: 1

CoC, ceramic-on-ceramic; CoP, ceramic-on-polyethylene; NR, not reported.

There is sparse literature on the optimal treatment strategy for this rare complication, but general treatment strategies include evaluating the acetabular cup and stem for damage and loosening, trunnion for wear and abrasion, osteolysis from metallosis, and debridement. Further follow-up for similar cases is recommended, as complete removal of microscopic debris cannot be fully guaranteed, potentially increasing the risk of wear. However, thorough debridement during revision surgery can help minimize this risk in the postoperative period.

Several factors may have impacted this patient’s clinical course. Compared to prior cases, this patient was morbidly obese with multiple comorbidities and arthroplasties.

Summary

Although ceramic head failure via fracture was more common in the original generation, the newer generation can still fracture. These fractures are important to recognize and develop a systematic approach in the operating room to addressing these mechanical undersides.

Conflicts of Interest

M. Karadsheh is a Stryker educational consultant; all other authors declare no potential conflicts of interest.

For full disclosure statements refer to https://doi.org/10.1016/j.artd.2025.101614.

Informed patient consent

The author(s) confirm that written informed consent has been obtained from the involved patient(s) or if appropriate from the parent, guardian, power of attorney of the involved patient(s); and, they have given approval for this information to be published in this case report (series).

CRediT authorship contribution statement

Clark Yin: Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Lauren Eberhardt: Writing – review & editing, Writing – original draft, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Matthew Cederman: Writing – review & editing, Writing – original draft, Visualization, Resources, Formal analysis, Data curation. Henry Haley: Writing – review & editing, Visualization, Supervision, Project administration, Methodology, Conceptualization. Andrew Steffenmeier: Writing – review & editing, Supervision, Project administration, Methodology, Conceptualization. Mark Karadsheh: Writing – review & editing, Supervision, Project administration, Conceptualization.

Appendix A. Supplementary data

graphic file with name figs1.jpg

Conflict of Interest Statement for Henry

Conflict of Interest Statement for Matthew
mmc1.docx (42.1KB, docx)
Conflict of Interest Statement for Clark
mmc2.docx (33.3KB, docx)
Conflict of Interest Statement for Lauren
mmc3.pdf (93KB, pdf)
Conflict of Interest Statement for Mark
mmc4.pdf (101.4KB, pdf)
Conflict of Interest Statement for Andrew
mmc5.pdf (88.4KB, pdf)

References

  • 1.Bal B.S., Garino J., Ries M., Rahaman M.N. A review of ceramic bearing materials in total joint arthroplasty. Hip Int. 2007;17:21–30. doi: 10.1177/112070000701700105. [DOI] [PubMed] [Google Scholar]
  • 2.Hannouche D., Zaoui A., Zadegan F., Sedel L., Nizard R. Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop. 2011;35:207–213. doi: 10.1007/s00264-010-1187-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Knahr K., Böhler M., Frank P., Plenk H., Salzer M. Survival analysis of an uncemented ceramic acetabular component in total hip replacement. Arch Orthop Trauma Surg. 1978;106:297–300. doi: 10.1007/BF00454337. 1987. [DOI] [PubMed] [Google Scholar]
  • 4.Lee G.C., Kim R.H. Incidence of modern alumina ceramic and alumina matrix composite femoral head failures in nearly 6 million hip implants. J Arthroplasty. 2017;32:546–551. doi: 10.1016/j.arth.2016.08.011. [DOI] [PubMed] [Google Scholar]
  • 5.Papaioannou I., Repantis T., Pantazidou G., Baikousis A., Korovessis P. Late onset atraumatic ceramic head fracture of a hybrid ceramic bearings total hip arthroplasty. Cureus. 2021;13 doi: 10.7759/cureus.13726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hallan G., Fenstad A.M., Furnes O. What is the frequency of fracture of ceramic components in THA? Results from the Norwegian arthroplasty register from 1997 to 2017. Clin Orthop Relat Res. 2020;478:1254–1261. doi: 10.1097/CORR.0000000000001272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Masson B. Emergence of the alumina matrix composite in total hip arthroplasty. Int Orthop. 2009;33:359–363. doi: 10.1007/s00264-007-0484-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hannouche D., Nich C., Bizot P., Meunier A., Nizard R., Sedel L. Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res. 2003:19–26. doi: 10.1097/01.blo.0000096806.78689.50. [DOI] [PubMed] [Google Scholar]
  • 9.Massin P., Lopes R., Masson B., Mainard D., French Hip & Knee Society SFHG Does Biolox Delta ceramic reduce the rate of component fractures in total hip replacement? Orthop Traumatol Surg Res. 2014;100(6 Suppl):S317–S321. doi: 10.1016/j.otsr.2014.05.010. [DOI] [PubMed] [Google Scholar]
  • 10.Chevalier J., Grandjean S., Kuntz M., Pezzotti G. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials. 2009;30:5279–5282. doi: 10.1016/j.biomaterials.2009.06.022. [DOI] [PubMed] [Google Scholar]
  • 11.McCarthy C.J., Mahon J., Sheridan G.A., Welch-Phillips A., O'Byrne J.M., Kenny P.J. Third and fourth generation ceramic-on-ceramic total hip arthroplasty at a minimum of ten years. J Clin Orthop Trauma. 2022;31 doi: 10.1016/j.jcot.2022.101942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Cai Y.Z., Yan S.G. Development of ceramic-on-ceramic implants for total hip arthroplasty. Orthop Surg. 2010;2:175–181. doi: 10.1111/j.1757-7861.2010.00083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Traina F., De Fine M., Di Martino A., Faldini C. Fracture of ceramic bearing surfaces following total hip replacement: a systematic review. BioMed Res Int. 2013;2013 doi: 10.1155/2013/157247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Heiner A.D., Mahoney C.R. Fracture of a BIOLOX delta ceramic femoral head articulating against a polyethylene liner: a case report. JBJS Case Connect. 2014;4 doi: 10.2106/JBJS.CC.N.00040. [DOI] [PubMed] [Google Scholar]
  • 15.Hungerford M., Neubauer P., Boner A., Kowalewski A. Late atraumatic ceramic head fracture in total hip arthroplasty: a case report. J Orthop Case Rep. 2023;13:65–68. doi: 10.13107/jocr.2023.v13.i06.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Patetta M.J., Kayupov E., Karam J.A., Chmell S.J. Fourth-generation ceramic head fracture in dual mobility total hip arthroplasty: a case report. J Orthop Case Rep. 2022;12:98–101. doi: 10.13107/jocr.2022.v12.i01.2638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Duensing I.M., Stanley S., Bolognesi M. Fracture of a 40-mm BIOLOX delta femoral head. Arthroplast Today. 2021;10:144–148. doi: 10.1016/j.artd.2021.06.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Valentini R., Vacchiano A., Sandri A., Regis D., Dall'Oca C., Magnan B. Fourth generation head fracture in ceramic-on-polyethylene bearing after hip revision surgery: a case report. Acta Biomed. 2020;91(4-S):248–253. doi: 10.23750/abm.v91i4-S.9499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Rankin C.S., Robinson P.G., Beattie N., Gaston P. Fracture of a BIOLOX delta ceramic femoral head: a case report and update of the literature. JBJS Case Connect. 2019;9 doi: 10.2106/JBJS.CC.18.00336. [DOI] [PubMed] [Google Scholar]
  • 20.Kocadal O., Ozler T., Bolukbasi A.E.T., Altintas F. Non-traumatic ceramic head fracture in total hip arthroplasty with ceramic-on-ceramic articulation at postoperative 16th years. Hip Pelvis. 2019;31:124–127. doi: 10.5371/hp.2019.31.2.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Pomeroy E., Rowan F., Masterson E. Atraumatic fracture of a BIOLOX delta ceramic femoral head articulating with a polyethylene liner: a case report. JBJS Case Connect. 2015;5 doi: 10.2106/JBJS.CC.O.00146. [DOI] [PubMed] [Google Scholar]
  • 22.Tucker D., Acharya M. Unusual prosthetic femoral head fracture in total hip arthroplasty: ceramic on polyethylene articulation. BMJ Case Rep. 2014;2014 doi: 10.1136/bcr-2013-202685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Dobria P., Patel A., Levine B. Catastrophic intraoperative failure of a ceramic femoral head. Arthroplast Today. 2021;11:234–238. doi: 10.1016/j.artd.2021.08.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lachiewicz P.F., Kleeman L.T., Seyler T. Bearing surfaces for total hip arthroplasty. J Am Acad Orthop Surg. 2018;26:45–57. doi: 10.5435/JAAOS-D-15-00754. [DOI] [PubMed] [Google Scholar]
  • 25.Park J.W., Ko Y.S., Lee Y.K., Ha Y.C., Koo K.H. Ten to 13-year results of delta ceramic-on-ceramic total hip arthroplasty in patients less than 30 Years old. J Bone Joint Surg Am. 2023;105:789–796. doi: 10.2106/JBJS.22.01291. [DOI] [PubMed] [Google Scholar]
  • 26.Lucchini S., Baleani M., Giardina F., Martelli A., Castagnini F., Bordini B., et al. A case-driven hypothesis for multi-stage crack growth mechanism in fourth-generation ceramic head fracture. J Orthop Surg Res. 2022;17:293. doi: 10.1186/s13018-022-03190-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Blumenfeld T.J., Politi J., Coker S., O'Dell T., Hamilton W. Long-Term results of delta ceramic-on-ceramic total hip arthroplasty. Arthroplast Today. 2022;13:130–135. doi: 10.1016/j.artd.2021.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Logroscino G., Saracco M., Maccauro G., Urbani A., Ciavardelli D., Consalvo A., et al. Ceramic-on-metal coupling in THA: long term clinical and radiographic outcomes using two different short stems. BMC Muscoskel Disord. 2022;22(Suppl 2):1065. doi: 10.1186/s12891-022-05077-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Alshammari M.O., de Petrillo G., Epure L.M., Huk O.L., Zukor D.J., Antoniou J. Outcomes of ceramic-on-ceramic bearing total hip arthroplasty: a minimum 10-year follow-up study. J Arthroplasty. 2023;38(7S):S146–S151. doi: 10.1016/j.arth.2023.04.018. [DOI] [PubMed] [Google Scholar]
  • 30.Van Loon J., Hoornenborg D., van der Vis H.M., Sierevelt I.N., Opdam K.T., Kerkhoffs G.M., et al. Ceramic-on-ceramic vs ceramic-on-polyethylene, a comparative study with 10-year follow-up. World J Orthoped. 2021;12:14–23. doi: 10.5312/wjo.v12.i1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kim S.M., Rhyu K.H., Yoo J.J., Lim S.J., Yoo J.H., Kweon S.H., et al. The reasons for ceramic-on-ceramic revisions between the third- and fourth-generation bearings in total hip arthroplasty from multicentric registry data. Sci Rep. 2021;11:5539. doi: 10.1038/s41598-021-85193-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Davis E.T., Remes V., Virolainen P., Gebuhr P., Van Backlé B., Revell M.P., et al. Mid-term outcomes of the R3 delta ceramic acetabular system in total hip arthroplasty. J Orthop Surg Res. 2021;16:35. doi: 10.1186/s13018-020-02192-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Castagnini F., Bordini B., Biondi F., Cosentino M., Stea S., Traina F. Mixed ceramic combinations in primary total hip arthroplasty achieved reassuring mid-to-longterm outcomes. J Mater Sci Mater Med. 2020;31:56. doi: 10.1007/s10856-020-06393-7. [DOI] [PubMed] [Google Scholar]
  • 34.Henri Bauwens P., Fary C., Servien E., Lustig S., Batailler C. Early low complication rate of ceramic-on-ceramic total hip arthroplasty by direct anterior approach. SICOT J. 2020;6:30. doi: 10.1051/sicotj/2020027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lee S.J., Yoon K.S. Outcome of ceramic-on-ceramic total hip arthroplasty with 4th generation 36 mm head compared to that with 3rd generation 28 mm head by propensity score matching. Indian J Orthop. 2020;54:848–855. doi: 10.1007/s43465-020-00242-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lee Y.K., Kim K.C., Yoon B.H., Kim T.Y., Ha Y.C., Koo K.H. Cementless total hip arthroplasty with delta-on-delta ceramic bearing in patients younger than 30 years. Hip Int. 2021;31:181–185. doi: 10.1177/1120700019889592. [DOI] [PubMed] [Google Scholar]
  • 37.Cho K.J., Park K.S., Jang W.Y., Park C.G., Yoon T.R. Midterm results of fourth-generation ceramic-on-ceramic total hip arthroplasty. Indian J Orthop. 2019;53:630–636. doi: 10.4103/ortho.IJOrtho_192_18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kim S.C., Lim Y.W., Jo W.L., Park H.W., Han S.B., Kwon S.Y., et al. Fourth-generation ceramic-on-ceramic THA results in improvements in midterm outcomes compared to third-generation THA but does not resolve noise problems: a cohort study of a single-hip system. BMC Muscoskel Disord. 2019;20:263. doi: 10.1186/s12891-019-2641-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Solarino G., Zagra L., Piazzolla A., Morizio A., Vicenti G., Moretti B. Results of 200 consecutive ceramic-on-ceramic cementless hip arthroplasties in patients up to 50 Years of age: a 5-24 Years of follow-up study. J Arthroplasty. 2019;34(7S):S232–S237. doi: 10.1016/j.arth.2019.01.057. [DOI] [PubMed] [Google Scholar]
  • 40.Blakeney W.G., Beaulieu Y., Puliero B., Lavigne M., Roy A., Massé V., et al. Excellent results of large-diameter ceramic-on-ceramic bearings in total hip arthroplasty: is Squeaking Related to Head Size. Bone Joint J. 2018;100-B:1434–1441. doi: 10.1302/0301-620X.100B11.BJJ-2018-0532.R1. [DOI] [PubMed] [Google Scholar]
  • 41.Lim S.J., Ryu H.G., Eun H.J., Park C.W., Kwon K.B., Park Y.S. Clinical outcomes and bearing-specific complications following fourth-generation alumina ceramic-on-ceramic total hip arthroplasty: a single-surgeon series of 749 hips at a minimum of 5-year follow-up. J Arthroplasty. 2018;33:2182–2186.e1. doi: 10.1016/j.arth.2018.02.045. [DOI] [PubMed] [Google Scholar]
  • 42.Howard D.P., Wall P.D.H., Fernandez M.A., Parsons H., Howard P.W. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry. Bone Joint J. 2017;99-B:1012–1019. doi: 10.1302/0301-620X.99B8.BJJ-2017-0019.R1. [DOI] [PubMed] [Google Scholar]
  • 43.Kim Y.H., Park J.W., Kim J.S. Alumina delta-on-alumina delta bearing in cementless total hip arthroplasty in patients aged <50 years. J Arthroplasty. 2016;31:2209–2214. doi: 10.1016/j.arth.2016.03.016. [DOI] [PubMed] [Google Scholar]
  • 44.Salo P.P., Honkanen P.B., Ivanova I., Reito A., Pajamäki J., Eskelinen A. High prevalence of noise following Delta ceramic-on-ceramic total hip arthroplasty. Bone Joint J. 2017;99-B:44–50. doi: 10.1302/0301-620X.99B1.37612. [DOI] [PubMed] [Google Scholar]
  • 45.Lee Y.K., Ha Y.C., Yoo J.I., Jo W.L., Kim K.C., Koo K.H. Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty. Bone Joint J. 2017;99-B:741–748. doi: 10.1302/0301-620X.99B6.BJJ-2016-0486.R3. [DOI] [PubMed] [Google Scholar]
  • 46.Hamilton W.G., McAuley J.P., Blumenfeld T.J., Lesko J.P., Himden S.E., Dennis D.A. Midterm results of delta ceramic-on-ceramic total hip arthroplasty. J Arthroplasty. 2015;30(9 Suppl):110–115. doi: 10.1016/j.arth.2015.02.047. [DOI] [PubMed] [Google Scholar]
  • 47.Baek S.H., Kim W.K., Kim J.Y., Kim S.Y. Do alumina matrix composite bearings decrease hip noises and bearing fractures at a minimum of 5 years after THA? Clin Orthop Relat Res. 2015;473:3796–3802. doi: 10.1007/s11999-015-4428-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Tai S.M., Munir S., Walter W.L., Pearce S.J., Walter W.K., Zicat B.A. Squeaking in large diameter ceramic-on-ceramic bearings in total hip arthroplasty. J Arthroplasty. 2015;30:282–285. doi: 10.1016/j.arth.2014.09.010. [DOI] [PubMed] [Google Scholar]
  • 49.Varnum C., Pedersen A.B., Kjærsgaard-Andersen P., Overgaard S. Comparison of the risk of revision in cementless total hip arthroplasty with ceramic-on-ceramic and metal-on-polyethylene bearings. Acta Orthop. 2015;86:477–484. doi: 10.3109/17453674.2015.1012975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.McDonnell S.M., Boyce G., Baré J., Young D., Shimmin A.J. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J. 2013;95-B:160–165. doi: 10.1302/0301-620X.95B2.30450. [DOI] [PubMed] [Google Scholar]
  • 51.Cai P., Hu Y., Xie J. Large-diameter Delta ceramic-on-ceramic versus common-sized ceramic-on-polyethylene bearings in THA. Orthopedics. 2012;35:e1307–e1313. doi: 10.3928/01477447-20120822-14. [DOI] [PubMed] [Google Scholar]
  • 52.Hamilton W.G., McAuley J.P., Dennis D.A., Murphy J.A., Blumenfeld T.J., Politi J. THA with Delta ceramic on ceramic: results of a multicenter investigational device exemption trial. Clin Orthop Relat Res. 2010;468:358–366. doi: 10.1007/s11999-009-1091-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Lombardi A.V., Jr., Berend K.R., Seng B.E., Clarke I.C., Adams J.B. Delta ceramic-on-alumina ceramic articulation in primary THA: prospective, randomized FDA-IDE study and retrieval analysis. Clin Orthop Relat Res. 2010;468:367–374. doi: 10.1007/s11999-009-1143-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lucchini S., Castagnini F., Giardina F., Tentoni F., Masetti C., Tassinari E., et al. Cementless ceramic-on-ceramic total hip arthroplasty in post-traumatic osteoarthritis after acetabular fracture: long-term results. Arch Orthop Trauma Surg. 2021;141:683–691. doi: 10.1007/s00402-020-03711-0. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Conflict of Interest Statement for Matthew
mmc1.docx (42.1KB, docx)
Conflict of Interest Statement for Clark
mmc2.docx (33.3KB, docx)
Conflict of Interest Statement for Lauren
mmc3.pdf (93KB, pdf)
Conflict of Interest Statement for Mark
mmc4.pdf (101.4KB, pdf)
Conflict of Interest Statement for Andrew
mmc5.pdf (88.4KB, pdf)

Articles from Arthroplasty Today are provided here courtesy of Elsevier

RESOURCES