Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Nov;110(2):237–241. doi: 10.1042/bj1100237

Effect of triperidol on carbohydrate and amino acid metabolism in rat brain-cortex slices

H Michalek 1, G L Gatti 1, F Pocchiari 1
PMCID: PMC1187203  PMID: 5726203

Abstract

1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABADOM P. N., SCHOLEFIELD P. G. Amino acid transport in brain cortex slices. I. The relation between energy production and the glucose-dependent transport of glycine. Can J Biochem Physiol. 1962 Nov;40:1575–1590. [PubMed] [Google Scholar]
  2. BELOFF-CHAIN A., CATANZARO R., CHAIN E. B., MASI I., POCCHIARI F., ROSSI C. The influence of insulin on carbohydrate metabolism in the isolated diaphragm muscle of normal and alloxan diabetic rats. Proc R Soc Lond B Biol Sci. 1955 May 17;143(913):481–503. doi: 10.1098/rspb.1955.0025. [DOI] [PubMed] [Google Scholar]
  3. CHAIN E. B., CHIOZZOTTO M., POCCHIARI F., ROSSI C., SANDMAN R. Participation of the ammonium ion in the transformation of glucose to amino acids in brain tissue. Proc R Soc Lond B Biol Sci. 1960 Jun 14;152:290–297. doi: 10.1098/rspb.1960.0039. [DOI] [PubMed] [Google Scholar]
  4. DEALMEIDA D. F., CHAIN E. B., POCCHIARI F. EFFECT OF AMMONIUM AND OTHER IONS ON THE GLUCOSE-DEPENDENT ACTIVE TRANSPORT OF L-HISTIDINE IN SLICES OF RAT-BRAIN CORTEX. Biochem J. 1965 Jun;95:793–796. doi: 10.1042/bj0950793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gatti G., Michalek H., Pocchiari F. Effetto del triperidolo sul metabolismo del glucosio e dell'acido piruvico in fettine di corteccia cerebrale di ratto. Ann Ist Super Sanita. 1966;2(2):277–286. [PubMed] [Google Scholar]
  6. JANSSEN P. A., JAGENEAU A. H., SCHELLEKENS K. H. Chemistry and pharmacology of compounds related to 4-(4-hydroxy-4-phenyl-piperidino)-butyrophenone. IV. Influence of haloperidol (R 1625) and of chlorpromazine on the behaviour of rats in an unfamiliar "open field" situation. Psychopharmacologia. 1960 Sep 13;1:389–392. doi: 10.1007/BF00441186. [DOI] [PubMed] [Google Scholar]
  7. JANSSEN P. A., NIEMEGEERS C. J. Analysis of the influence of haloperidol and pharmacologically related drugs on learned avoidance-escape habits of the wistar rat in a "jumping box" situation. Arzneimittelforschung. 1961 Nov;11:1037–1043. [PubMed] [Google Scholar]
  8. JANSSEN P. A., NIEMEGEERS C. J. Chemistry and pharmacology of compounds related to 4-(4-hydroxy-4-phenyl-piperidino)-butvrophenone. Arzneimittelforschung. 1959 Dec;9:765–767. [PubMed] [Google Scholar]
  9. JANSSEN P. A., NIEMEGEERS C. J., SCHELLEKENS K. H. Chemistry and pharmacology of compounds related to 4-(4-hydroxy-4-phenyl-piperidino)-butyrophenone. III. Duration of antiemetic action and oral effectiveness of Haloperidol (R 1625) and of chlorpromazine in dogs. Arzneimittelforschung. 1960 Nov;10:955–955. [PubMed] [Google Scholar]
  10. JANSSEN P. A., VAN DE WESTERINGH C., JAGENEAU A. H., DEMOEN P. J., HERMANS B. K., VAN DAELE G. H., SCHELLEKENS K. H., VAN DER EYCKEN C. A. Chemistry and pharmacology of CNS depressants related to 4-(4-hydroxy-phenylpiperidino)butyrophenone. I. Synthesis and screening data in mice. J Med Pharm Chem. 1959 Jun;1:281–297. doi: 10.1021/jm50004a007. [DOI] [PubMed] [Google Scholar]
  11. Jowett M., Quastel J. H. The effects of narcotics on tissue oxidations. Biochem J. 1937 Apr;31(4):565–578. doi: 10.1042/bj0310565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KINI M. M., QUASTEL J. H. Carbohydrate--amino-acid inter-relations in brain cortex in vitro. Nature. 1959 Jul 25;184:252–256. doi: 10.1038/184252a0. [DOI] [PubMed] [Google Scholar]
  13. LINDAN O., QUASTEL J. H., SVED S. Biochemical studies on chlorpromazine. I. The effect of chlorpromazine on respiratory activity of isolated rat brain cortex. Can J Biochem Physiol. 1957 Dec;35(12):1135–1144. [PubMed] [Google Scholar]
  14. MCILWAIN H. The effect of depressants on the metabolism of stimulated cerebral tissues. Biochem J. 1953 Feb;53(3):403–412. doi: 10.1042/bj0530403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SELLINGER O. Z., CATANZARO R., CHAIN E. B., POCCHIARIF The metabolism of glutamate and aspartate in rat cerebral cortical slices. Proc R Soc Lond B Biol Sci. 1962 Jul 31;156:148–162. doi: 10.1098/rspb.1962.0035. [DOI] [PubMed] [Google Scholar]
  16. TOWER D. B. The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J Neurochem. 1958 Dec;3(2):185–205. doi: 10.1111/j.1471-4159.1958.tb12625.x. [DOI] [PubMed] [Google Scholar]
  17. Weil-Malherbe H. Studies on brain metabolism: The metabolism of glutamic acid in brain. Biochem J. 1936 Apr;30(4):665–676. doi: 10.1042/bj0300665. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES