Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 May;112(4):497–503. doi: 10.1042/bj1120497

The influence of the size and nature of basic activators on Clostridium perfringens polynucleotide phosphorylase-catalysed polyadenylic acid synthesis

P S Fitt 1, Helga Wille 1
PMCID: PMC1187738  PMID: 4308330

Abstract

1. Basic oligo- and poly-(amino acids) stimulate polyadenylic acid synthesis by purified Clostridium perfringens polynucleotide phosphorylase (nucleoside diphosphate–polyribonucleotide nucleotidyltransferase, EC 2.7.7.8). 2. The effectiveness of the activators increases with chain length up to approx. 20–30 residues. 3. Polymers of the l and dl series are equally effective on a weight-for-weight basis. 4. l-Lysine, d-lysine, diethylamine and triethylamine, as hydrochlorides or hydrobromides, all stimulate the reaction markedly if their concentration is high enough. Their effect is similar to that of sodium chloride. 5. The size of the product depends primarily on the Mg2+ concentration and basic polymers have a relatively limited effect on it. 6. Polyadenylic acid itself undergoes an Mg2+-catalysed non-enzymic hydrolysis.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAMANN E., FISCHLER F., TRAPMANN H. Verhalten und Spezifität von Cer, Lanthan, Eisen und Aluminium als Phosphatasemodelle gegenüber physiologisch wichtigen Phosphorsäureverbindungen wie ZuckerphosphorAsauren, Adenylsäuren, Adenosintriphosphorsäure und anderen. Biochem Z. 1954;325(6):413–428. [PubMed] [Google Scholar]
  2. BAMANN E., TRAPMANN H., FISCHLER F. Verhalten und Spezifität von Cer und Lanthan als Phosphatase-Modelle gegenüber Nucleinsäuren und Mononucleotiden. Biochem Z. 1954;326(2):89–96. [PubMed] [Google Scholar]
  3. Fitt P. S., Fitt E. A., Wille H. A study by polyacrylamide-gel electrophoresis of the effect of proteolysis on Micrococcus lysodeikticus polynucleotide phosphorylase. Biochem J. 1968 Dec;110(3):475–479. doi: 10.1042/bj1100475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fitt P. S., Wille H. The preferential loss of the polylysine- or polyornithine-stimulated activity of Clostridium perfringens polynucleotide phosphorylase during proteolysis. Biochem J. 1969 May;112(4):489–495. doi: 10.1042/bj1120489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lindahl T. Irreversible heat inactivation of transfer ribonucleic acids. J Biol Chem. 1967 Apr 25;242(8):1970–1973. [PubMed] [Google Scholar]
  6. Sober H. A., Schlossman S. F., Yaron A., Latt SA RUSHIZKY G. W. Protein-nucleic acid interaction. I. Nuclease-resistant polylysine-ribonculeic acid complexes. Biochemistry. 1966 Nov;5(11):3608–3616. doi: 10.1021/bi00875a033. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES