Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1969 May;112(5):595–600. doi: 10.1042/bj1120595

Rates of ketone-body formation in the perfused rat liver

H A Krebs 1, Patricia G Wallace 1, R Hems 1, R A Freedland 1
PMCID: PMC1187761  PMID: 5822063

Abstract

1. The rates of formation of acetoacetate and β-hydroxybutyrate by the isolated perfused rat liver were measured under various conditions. 2. The rates found after addition of butyrate, octanoate, oleate and linoleate were about 100μmoles/hr./g. wet wt. in the liver of starved rats. These rates are much higher than those found with rat liver slices. 3. The differences between the rates given by slices and by the perfused organ were much higher with the long-chain than with short-chain fatty acids. The increments caused by oleate and linoleate were 12 and 16 times as large in the perfused organ as in the slices, whereas the increments caused by butyrate and octanoate were about four times as large. 4. The rates of ketogenesis in the unsupplemented perfused liver of well-fed rats, and the increments caused by the addition of fatty acids, were about half of those in the liver from starved rats. 5. The value of the [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was raised by octanoate, oleate and linoleate. 6. Carnitine did not significantly accelerate ketogenesis from fatty acids. 7. Oleate formed up to 82% of the expected yield of ketone bodies. 8. In the liver of alloxan-diabetic rats the endogenous rates of ketogenesis were raised, in some cases as high as in the liver from starved rats, after addition of oleate. 9. On addition of either β-hydroxybutyrate or acetoacetate to the perfusion medium the liver gradually adjusted the [β-hydroxybutyrate]/[acetoacetate] ratio towards the normal range. 10. The [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was about 0·4 when slices were incubated, but near the physiological value of 2 when the liver was perfused. 11. The experiments demonstrate that for the study of ketogenesis slices are in many ways grossly inferior to the perfused liver.

Full text

PDF
595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEINERT H., PAGE E. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. V. Oxidation-reductions of the flavoproteins. J Biol Chem. 1957 Mar;225(1):479–497. [PubMed] [Google Scholar]
  2. CRANE F. L., MII S., HAUGE J. G., GREEN D. E., BEINERT H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase. J Biol Chem. 1956 Feb;218(2):701–706. [PubMed] [Google Scholar]
  3. Edson N. L. Ketogenesis-antiketogenesis: The influence of ammonium chloride on ketone-body formation in liver. Biochem J. 1935 Sep;29(9):2082–2094. doi: 10.1042/bj0292082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GREEN D. E., MII S., MAHLER H. R., BOCK R. M. Studies on the fatty acid oxidizing system of animal tissues. III. Butyryl coenzyme A dehydrogenase. J Biol Chem. 1954 Jan;206(1):1–12. [PubMed] [Google Scholar]
  5. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krebs H. A., Gascoyne T. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates. Biochem J. 1968 Jul;108(4):513–520. doi: 10.1042/bj1080513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leloir L. F., Muñoz J. M. Fatty acid oxidation in liver. Biochem J. 1939 May;33(5):734–746. doi: 10.1042/bj0330734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Löffler G., Matschinsky F., Wieland O. Uber den Mechanismus der gesteigerten Ketonköperbildung. II. Redox-Status des DPN der isolierten Rattenleber bei Durchströmung mit Fettsäuren. Biochem Z. 1965 Jun 3;342(1):76–84. [PubMed] [Google Scholar]
  9. MILLER L. L., BLY C. G., WATSON M. L., BALE W. F. The dominant role of the liver in plasma protein synthesis; a direct study of the isolated perfused rat liver with the aid of lysine-epsilon-C14. J Exp Med. 1951 Nov;94(5):431–453. doi: 10.1084/jem.94.5.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SCHIMASSEK H. [Metabolites of carbohydrate metabolism in the isolated perfused rat liver]. Biochem Z. 1963;336:460–467. [PubMed] [Google Scholar]
  11. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Williamson D. H., Bates M. W., Krebs H. A. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968 Jul;108(3):353–361. doi: 10.1042/bj1080353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES