Skip to main content
Journal of Psychiatry & Neuroscience : JPN logoLink to Journal of Psychiatry & Neuroscience : JPN
. 1995 Jan;20(1):80–82.

A simple test to monitor the motor dysfunction in a transgenic mouse model of amyotrophic lateral sclerosis.

J F Collard 1, J P Julien 1
PMCID: PMC1188660  PMID: 7865504

Abstract

We reported recently that transgenic mice overexpressing human neurofilament heavy (NF-H) proteins develop a progressive neurological disorder with pathological features resembling those found in amyotrophic lateral sclerosis (ALS) (Côté et al 1993). A simple behavioral test, the grasping ability, has been used here for evaluating the motor dysfunction during aging of NF-H transgenic mice. Transgenic mice overexpressing NF-H proteins are normal at birth but they progressively fail to uphold their weight when tested for their grasping ability. The deficits in motor function during aging correlate with a progressive disruption of peripheral nerve function as evidenced by the atrophy and degeneration of distal axons.

Full text

PDF
80

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carpenter S. Proximal axonal enlargement in motor neuron disease. Neurology. 1968 Sep;18(9):841–851. doi: 10.1212/wnl.18.9.841. [DOI] [PubMed] [Google Scholar]
  2. Côté F., Collard J. F., Julien J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell. 1993 Apr 9;73(1):35–46. doi: 10.1016/0092-8674(93)90158-m. [DOI] [PubMed] [Google Scholar]
  3. Gajdusek D. C. Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med. 1985 Mar 14;312(11):714–719. doi: 10.1056/NEJM198503143121110. [DOI] [PubMed] [Google Scholar]
  4. Griffin J. W., Watson D. F. Axonal transport in neurological disease. Ann Neurol. 1988 Jan;23(1):3–13. doi: 10.1002/ana.410230103. [DOI] [PubMed] [Google Scholar]
  5. Hirano A., Donnenfeld H., Sasaki S., Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1984 Sep;43(5):461–470. doi: 10.1097/00005072-198409000-00001. [DOI] [PubMed] [Google Scholar]
  6. Muma N. A., Cork L. C. Alterations in neurofilament mRNA in hereditary canine spinal muscular atrophy. Lab Invest. 1993 Oct;69(4):436–442. [PubMed] [Google Scholar]
  7. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O'Regan J. P., Deng H. X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59–62. doi: 10.1038/362059a0. [DOI] [PubMed] [Google Scholar]
  8. Sasaki S., Maruyama S., Yamane K., Sakuma H., Takeishi M. Swellings of proximal axons in a case of motor neuron disease. Ann Neurol. 1989 May;25(5):520–522. doi: 10.1002/ana.410250520. [DOI] [PubMed] [Google Scholar]
  9. Schmidt M. L., Carden M. J., Lee V. M., Trojanowski J. Q. Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls. Lab Invest. 1987 Mar;56(3):282–294. [PubMed] [Google Scholar]
  10. Xu Z., Cork L. C., Griffin J. W., Cleveland D. W. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell. 1993 Apr 9;73(1):23–33. doi: 10.1016/0092-8674(93)90157-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Psychiatry and Neuroscience are provided here courtesy of Canadian Science Publishing

RESOURCES