Skip to main content
Journal of Psychiatry & Neuroscience : JPN logoLink to Journal of Psychiatry & Neuroscience : JPN
. 1996 Mar;21(2):114–122.

[3H]8-OH-DPAT binding and serotonin content in rat cerebral cortex after acute fluoxetine, desipramine, or pargyline.

M Carli 1, S Afkhami-Dastjerdian 1, T A Reader 1
PMCID: PMC1188750  PMID: 8820177

Abstract

Cortical serotonin1A (5-HT1A) receptors in the rat were studied following acute (24 hours) intraperitoneal administrations of the 5-HT uptake inhibitor fluoxetine (10 mg/kg), the antidepressant desipramine (20 mg/kg), or the monoamine oxidase (MAO) inhibitor pargyline (75 mg/kg). The 5-HT1A receptors were labelled in total cortex membrane homogenates with [3H]8-OH-DPAT, and the monoamines measured in cingulate cortex by high-performance liquid chromatography. As expected, after pargyline administration tissue concentrations of 5-HT, noradrenaline (NA) and dopamine (DA) were markedly increased due to MAO inhibition with a concomitant decrease of the metabolites 5-hydroxyindole-3-acetic acid and homovanillic acid. However, neither desipramine nor fluoxetine changed monoamine concentrations. Saturation binding with [3H]8-OH-DPAT revealed that, for the control animals (saline treated), the curves were best fitted to a 2-site model. Following drug administration, the saturation curves were still best fitted to a 2-site model, with no changes in affinities or bonding capacities. In competition experiments with 5-HT, buspirone, and pindolol, the curves were always best fitted to a 2-site model. Following fluoxetine administration, the inhibition curves revealed decreases in the affinity of the low-affinity site (KiL) for the agonist buspirone, and in the relative proportion of these sites. In addition, following pargyline, there was an increase in the affinity of the high-affinity site (KiH) for 5-HT but with a decrease of the relative proportion of high-affinity sites. The results confirm that [3H]8-OH-DPAT binding is to a 2-site model, and reveal an absence of downregulation of 5-HT1A receptors following increases in tissue 5-HT after MAO inhibition or antidepressant administrations. Moreover, the data may reflect an alteration of the coupling efficacy between cortical 5-HT1A receptors and their associated G proteins.

Full text

PDF
114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. R., Zhou Q. Y., Van Tol H. H., Bunzow J. R., Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem. 1990 Apr 5;265(10):5825–5832. [PubMed] [Google Scholar]
  2. Blier P., De Montigny C. Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J Neurosci. 1983 Jun;3(6):1270–1278. doi: 10.1523/JNEUROSCI.03-06-01270.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blier P., de Montigny C. Serotoninergic but not noradrenergic neurons in rat central nervous system adapt to long-term treatment with monoamine oxidase inhibitors. Neuroscience. 1985 Dec;16(4):949–955. doi: 10.1016/0306-4522(85)90107-1. [DOI] [PubMed] [Google Scholar]
  4. Blier P., de Montigny C., Tardif D. Short-term lithium treatment enhances responsiveness of postsynaptic 5-HT1A receptors without altering 5-HT autoreceptor sensitivity: an electrophysiological study in the rat brain. Synapse. 1987;1(3):225–232. doi: 10.1002/syn.890010302. [DOI] [PubMed] [Google Scholar]
  5. Carli M., Anand-Srivastava M. B., Molina-Holgado E., Dewar K. M., Reader T. A. Effects of chronic lithium treatments on central dopaminergic receptor systems: G proteins as possible targets. Neurochem Int. 1994 Jan;24(1):13–22. doi: 10.1016/0197-0186(94)90124-4. [DOI] [PubMed] [Google Scholar]
  6. Chaput Y., de Montigny C., Blier P. Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1986 Aug;333(4):342–348. doi: 10.1007/BF00500007. [DOI] [PubMed] [Google Scholar]
  7. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  8. Dewar K. M., Grondin L., Nénonéné E. K., Ohayon M., Reader T. A. [3H]paroxetine binding and serotonin content of rat brain: absence of changes following antidepressant treatments. Eur J Pharmacol. 1993 Apr 22;235(1):137–142. doi: 10.1016/0014-2999(93)90833-4. [DOI] [PubMed] [Google Scholar]
  9. Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J Neurochem. 1985 Jun;44(6):1685–1696. doi: 10.1111/j.1471-4159.1985.tb07155.x. [DOI] [PubMed] [Google Scholar]
  10. Hamon M., Gozlan H., el Mestikawy S., Emerit M. B., Bolaños F., Schechter L. The central 5-HT1A receptors: pharmacological, biochemical, functional, and regulatory properties. Ann N Y Acad Sci. 1990;600:114–131. doi: 10.1111/j.1749-6632.1990.tb16877.x. [DOI] [PubMed] [Google Scholar]
  11. Juorio A. V., Greenshaw A. J., Wishart T. B. Reciprocal changes in striatal dopamine and beta-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn Schmiedebergs Arch Pharmacol. 1988 Dec;338(6):644–648. doi: 10.1007/BF00165628. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mongeau R., Welner S. A., Quirion R., Suranyi-Cadotte B. E. Further evidence for differential affinity states of the serotonin1A receptor in rat hippocampus. Brain Res. 1992 Sep 11;590(1-2):229–238. doi: 10.1016/0006-8993(92)91100-s. [DOI] [PubMed] [Google Scholar]
  14. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  15. Nénonéné E. K., Radja F., Carli M., Grondin L., Reader T. A. Heterogeneity of cortical and hippocampal 5-HT1A receptors: a reappraisal of homogenate binding with 8-[3H]hydroxydipropylaminotetralin. J Neurochem. 1994 May;62(5):1822–1834. doi: 10.1046/j.1471-4159.1994.62051822.x. [DOI] [PubMed] [Google Scholar]
  16. Palacios J. M., Waeber C., Hoyer D., Mengod G. Distribution of serotonin receptors. Ann N Y Acad Sci. 1990;600:36–52. doi: 10.1111/j.1749-6632.1990.tb16871.x. [DOI] [PubMed] [Google Scholar]
  17. Peroutka S. J. 5-Hydroxytryptamine receptors. J Neurochem. 1993 Feb;60(2):408–416. doi: 10.1111/j.1471-4159.1993.tb03166.x. [DOI] [PubMed] [Google Scholar]
  18. Radja F., Daval G., Hamon M., Vergé D. Pharmacological and physicochemical properties of pre-versus postsynaptic 5-hydroxytryptamine1A receptor binding sites in the rat brain: a quantitative autoradiographic study. J Neurochem. 1992 Apr;58(4):1338–1346. doi: 10.1111/j.1471-4159.1992.tb11347.x. [DOI] [PubMed] [Google Scholar]
  19. Reader T. A., Dewar K. M. Endogenous homovanillic acid levels differ between rat and rabbit caudate, hippocampus, and cortical regions. Neurochem Res. 1989 Nov;14(11):1137–1141. doi: 10.1007/BF00965620. [DOI] [PubMed] [Google Scholar]
  20. Reader T. A., Grondin L. Distribution of catecholamines, serotonin, and their major metabolites in the rat cingulate, piriform-entorhinal, somatosensory, and visual cortex: a biochemical survey using high-performance liquid chromatography. Neurochem Res. 1987 Dec;12(12):1087–1097. doi: 10.1007/BF00971709. [DOI] [PubMed] [Google Scholar]
  21. Reader T. A., Radja F., Dewar K. M., Descarries L. Denervation, hyperinnervation, and interactive regulation of dopamine and serotonin receptors. Ann N Y Acad Sci. 1995 May 10;757:293–310. doi: 10.1111/j.1749-6632.1995.tb17487.x. [DOI] [PubMed] [Google Scholar]
  22. Ruat M., Traiffort E., Leurs R., Tardivel-Lacombe J., Diaz J., Arrang J. M., Schwartz J. C. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8547–8551. doi: 10.1073/pnas.90.18.8547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SPECTOR S., SHORE P. A., BRODIE B. B. Biochemical and pharmacological effects of the monoamine oxidase inhibitors, iproniazid, 1-phenyl-2-hydrazinopropane (JB 516) and 1-phenyl-3-hydrazinobutane (JB 835). J Pharmacol Exp Ther. 1960 Jan;128:15–21. [PubMed] [Google Scholar]
  24. Shen Y., Monsma F. J., Jr, Metcalf M. A., Jose P. A., Hamblin M. W., Sibley D. R. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem. 1993 Aug 25;268(24):18200–18204. [PubMed] [Google Scholar]
  25. Sibley D. R., Creese I. Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification. J Biol Chem. 1983 Apr 25;258(8):4957–4965. [PubMed] [Google Scholar]
  26. Stadel J. M., Lefkowitz R. J. Multiple reactive sulfhydryl groups modulate the function of adenylate cyclase coupled beta-adrenergic receptors. Mol Pharmacol. 1979 Nov;16(3):709–718. [PubMed] [Google Scholar]
  27. TAYLOR J. D., WYKES A. A., GLADISH Y. C., MARTIN W. B. New inhibitor of monoamine oxidase. Nature. 1960 Sep 10;187:941–942. doi: 10.1038/187941a0. [DOI] [PubMed] [Google Scholar]
  28. Wong D. T., Horng J. S., Bymaster F. P., Hauser K. L., Molloy B. B. A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 1974 Aug 1;15(3):471–479. doi: 10.1016/0024-3205(74)90345-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Psychiatry and Neuroscience are provided here courtesy of Canadian Science Publishing

RESOURCES