Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Jun;413:1–11. doi: 10.1113/jphysiol.1989.sp017638

Protection of hippocampal slices from young rats against anoxic transmission damage is due to better maintenance of ATP.

I S Kass 1, P Lipton 1
PMCID: PMC1189085  PMID: 2557434

Abstract

1. Dentate granule cells in hippocampal slices from young rats (aged 30-40 days) are more resistant to damage from 10 min of anoxia than are granule cells from adult rats. The evoked population spike from these cells recovers to 78% of its pre-anoxic amplitude in young animals while in adult animals it shows only 4% recovery. This increased resistance is associated with higher levels of adenosine triphosphate (ATP) during the anoxic period. 2. When the duration of anoxia in slices from young animals is increased to 15 min, ATP falls to levels found in adult tissue after 10 min of anoxia. The dentate granule cells in slices from young animals show little recovery of the evoked response (19%) after such an exposure to anoxia. 3. When slices from young animals are subjected to 10 min of anoxia in low-glucose (2 mM) artificial cerebrospinal fluid, ATP levels fall to those found in adult tissue after 10 min of anoxia and the evoked response from the dentate granule cells again shows little recovery (10%). 4. The evoked response in the CA1 pyramidal cell layer of slices from young rats is more resistant to damage from 5 or 7 min anoxia than it is in slices from adults. Thus this region, also, shows an age-dependent increase in susceptibility to anoxic damage. ATP levels in the CA1 region of tissue from young animals at the end of 5 and 7 min anoxia are greater than ATP levels in tissue from adult animals after these same anoxic exposures. 5. Basal levels of 45Ca accumulation are greater in CA1 and dentate gyrus from young rats. However, the percentage increases during 10 min of anoxia are less than one-half the values in slices from adult animals. 6. The results suggest that the increased resistance of slices from young animals to anoxic transmission damage may be explained by the better maintenance of ATP in synaptic regions of these slices during anoxia. This may confer the increased resistance by lowering the anoxic increase in cell Ca2+.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth R. F., Patel T. B., Clark J. B. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem. 1980 Jan;34(1):17–25. doi: 10.1111/j.1471-4159.1980.tb04616.x. [DOI] [PubMed] [Google Scholar]
  2. Borle A. B. Methods for assessing hormone effects on calcium fluxes in vitro. Methods Enzymol. 1975;39:513–573. doi: 10.1016/s0076-6879(75)39046-0. [DOI] [PubMed] [Google Scholar]
  3. Dienel G. A., Pulsinelli W. A., Duffy T. E. Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem. 1980 Nov;35(5):1216–1226. doi: 10.1111/j.1471-4159.1980.tb07878.x. [DOI] [PubMed] [Google Scholar]
  4. Duffy T. E., Kohle S. J., Vannucci R. C. Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem. 1975 Feb;24(2):271–276. doi: 10.1111/j.1471-4159.1975.tb11875.x. [DOI] [PubMed] [Google Scholar]
  5. Gonya-Magee T., Vannucci R. C. Ontogeny of cerebral oxidative metabolism in the chick embryo. J Neurochem. 1982 May;38(5):1387–1392. doi: 10.1111/j.1471-4159.1982.tb07917.x. [DOI] [PubMed] [Google Scholar]
  6. Kass I. S., Lipton P. Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol. 1986 Sep;378:313–334. doi: 10.1113/jphysiol.1986.sp016221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kass I. S., Lipton P. Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol. 1982 Nov;332:459–472. doi: 10.1113/jphysiol.1982.sp014424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  9. Lipton P., Whittingham T. S. The effect of hypoxia on evoked potentials in the in vitro hippocampus. J Physiol. 1979 Feb;287:427–438. doi: 10.1113/jphysiol.1979.sp012668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lust W. D., Feussner G. K., Barbehenn E. K., Passonneau J. V. The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts. Anal Biochem. 1981 Jan 15;110(2):258–266. doi: 10.1016/0003-2697(81)90144-5. [DOI] [PubMed] [Google Scholar]
  11. Mayevsky A., Chance B. Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res. 1975 Nov 7;98(1):149–165. doi: 10.1016/0006-8993(75)90515-6. [DOI] [PubMed] [Google Scholar]
  12. Siesjö B. K. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab. 1981;1(2):155–185. doi: 10.1038/jcbfm.1981.18. [DOI] [PubMed] [Google Scholar]
  13. Siesjö B. K. Cerebral circulation and metabolism. J Neurosurg. 1984 May;60(5):883–908. doi: 10.3171/jns.1984.60.5.0883. [DOI] [PubMed] [Google Scholar]
  14. Simon R. P., Swan J. H., Griffiths T., Meldrum B. S. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984 Nov 16;226(4676):850–852. doi: 10.1126/science.6093256. [DOI] [PubMed] [Google Scholar]
  15. Skrede K. K., Westgaard R. H. The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 1971 Dec 24;35(2):589–593. doi: 10.1016/0006-8993(71)90508-7. [DOI] [PubMed] [Google Scholar]
  16. Thurston J. H., McDougal D. B., Jr Effect of ischemia on metabolism of the brain of the newborn mouse. Am J Physiol. 1969 Feb;216(2):348–352. doi: 10.1152/ajplegacy.1969.216.2.348. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES