Abstract
1. Competitive behaviour detectable in the stimulatory action of external sodium (Nao+) and internal magnesium (Mgi2+) corroborates the idea that Nao+-dependent Mg2+ extrusion is a Mgi2+-Nao+ exchange. 2. Mg2+-loaded resealed cells made from metabolically starved cells (with less than 5 mumols/l cells of ATP), show hardly any Nao+-dependent Mg2+ outflow. Incorporation of ATP during lysis-resealing restores this Mg2+ transport. Half-saturation for the effect is reached at an initial ATP concentration of about 150 mumols/l cells. 3. Adenylyl(beta, gamma-methylene) diphosphonate (AMP-PCP) and AMP had no restituting effect, indicating that in order to act ATP must be hydrolysed. 4. Nao+-dependent Mg2+ outflow is not inhibited by vanadate concentrations that completely block the Ca2+ or Na+ pump. Therefore, the Nao+-Mgi2+ exchange does not fall into the class of cation pumps of the E1E2 type. 5. Yet the fact that reversal of the Na+ gradient fails to reverse the direction of the Na+-dependent Mg2+ transport in human red cells (Lüdi & Schatzmann, 1987) and that at equal Na+ concentration inside and outside the rate of Mg2+ transport is still 50% of that at a Na+ concentration difference of approximately 100 mM across the membrane suggests that the Na+ gradient, or the cation gradients in general, are not the only driving forces for Mg2+ movement. The assumption that there is energy input from ATP hydrolysis is compatible with these observations, whereas proposing the action of a protein kinase fails to explain them. 6. It is concluded that the Nao+-Mgi2+ exchange system has an absolute requirement for ATP and that it is more probable that ATP is supplying energy for transport rather than activating transport by protein phosphorylation or simply by binding.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berenblum I., Chain E. Studies on the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):286–294. doi: 10.1042/bj0320286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
- Caroni P., Carafoli E. The regulation of the Na+ -Ca2+ exchanger of heart sarcolemma. Eur J Biochem. 1983 May 16;132(3):451–460. doi: 10.1111/j.1432-1033.1983.tb07383.x. [DOI] [PubMed] [Google Scholar]
- Cavieres J. D. Fast reversal of the initial reaction steps of the plasma membrane (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1987 May 12;899(1):83–92. doi: 10.1016/0005-2736(87)90242-2. [DOI] [PubMed] [Google Scholar]
- Feldhau P., Fröhlich T., Goody R. S., Isakov M., Schirmer R. H. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur J Biochem. 1975 Sep 1;57(1):197–204. doi: 10.1111/j.1432-1033.1975.tb02291.x. [DOI] [PubMed] [Google Scholar]
- Flatman P. W., Lew V. L. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol. 1980 Aug;305:13–30. doi: 10.1113/jphysiol.1980.sp013346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Féray J. C., Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta. 1986 Mar 27;856(1):76–84. doi: 10.1016/0005-2736(86)90012-x. [DOI] [PubMed] [Google Scholar]
- Féray J. C., Garay R. Demonstration of a Na+: Mg2+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs. Naunyn Schmiedebergs Arch Pharmacol. 1988 Sep;338(3):332–337. doi: 10.1007/BF00173409. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Günther T., Vormann J. Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1069–1074. doi: 10.1016/s0006-291x(87)80240-1. [DOI] [PubMed] [Google Scholar]
- Güther T., Vormann J., Förster R. Regulation of intracellular magnesium by Mg2+ efflux. Biochem Biophys Res Commun. 1984 Feb 29;119(1):124–131. doi: 10.1016/0006-291x(84)91627-9. [DOI] [PubMed] [Google Scholar]
- Lundin A., Richardsson A., Thore A. Continous monitoring of ATP-converting reactions by purified firefly luciferase. Anal Biochem. 1976 Oct;75(2):611–620. doi: 10.1016/0003-2697(76)90116-0. [DOI] [PubMed] [Google Scholar]
- Läuger P. Voltage dependence of sodium-calcium exchange: predictions from kinetic models. J Membr Biol. 1987;99(1):1–11. doi: 10.1007/BF01870617. [DOI] [PubMed] [Google Scholar]
- Lüdi H., Schatzmann H. J. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. J Physiol. 1987 Sep;390:367–382. doi: 10.1113/jphysiol.1987.sp016706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen R., Rasmussen H. Fractionation of extracts of firefly tails by gel filtration. Acta Chem Scand. 1968;22(6):1757–1762. doi: 10.3891/acta.chem.scand.22-1757. [DOI] [PubMed] [Google Scholar]
- Wüthrich A., Schatzmann H. J., Romero P. Net ATP synthesis by running the red cell calcium pump backwards. Experientia. 1979 Dec 15;35(12):1589–1590. doi: 10.1007/BF01953210. [DOI] [PubMed] [Google Scholar]