Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Jul;414:433–453. doi: 10.1113/jphysiol.1989.sp017697

Tension-independent heat in rabbit papillary muscle.

N R Alpert 1, E M Blanchard 1, L A Mulieri 1
PMCID: PMC1189151  PMID: 2607437

Abstract

1. Heat and force were measured from isometrically contracting (0.2 Hz) rabbit papillary muscles at 21 degrees C during a single contraction-relaxation cycle using antimony-bismuth thermopiles and a capacitance force transducer. 2. Tension-independent heat (TIH) associated with excitation-contraction coupling was isolated from the initial heat by eliminating tension and tension-dependent heat with a Krebs-Ringer solution containing 2,3-butanedione monoxime (BDM) and mannitol. 3. A strategy for testing the validity of this new method for measuring TIH in heart muscle is described and the test confirms that the BDM-hypertonic solution partitioning method properly estimates the magnitude of the TIH component of initial heat. 4. TIH at the time of complete mechanical relaxation is 1.00 +/- 0.17 mJ/g wet weight and the data suggest that calcium cycling is complete by this time. Conversion of TIH to calcium cycled, assuming that 87% of TIH is due to calcium pumping by the sarcoplasmic reticulum, indicates that approximately 52 nmol calcium/g wet weight are required to support a single cycle of mechanical activity (0.2 Hz, 21 degrees C). 5. The length and frequency dependence of excitation-contraction coupling were demonstrated. TIH is reduced by shortening muscle length and by increasing the interval between stimuli. These steady-state data suggest that only a portion (approximately 40%) of TIH is directly related to activation of the contractile apparatus. 6. TIH in the first twitch following a 45 min rest period is significantly reduced by approximately 30%. 7. With subsequent twitches in the positive treppe following the rest period, TIH does not increase as steeply as expected suggesting that tension rise in twitches 1-10 may be modulated by competitive binding of calcium rather than increased calcium delivery.

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982 Jun;327:79–94. doi: 10.1113/jphysiol.1982.sp014221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen D. G., Smith G. L. The effects of hypertonicity on tension and intracellular calcium concentration in ferret ventricular muscle. J Physiol. 1987 Feb;383:425–439. doi: 10.1113/jphysiol.1987.sp016418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alpert N. R., Mulieri L. A. Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle. Fed Proc. 1982 Feb;41(2):192–198. [PubMed] [Google Scholar]
  4. Alpert N. R., Mulieri L. A. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res. 1982 Apr;50(4):491–500. doi: 10.1161/01.res.50.4.491. [DOI] [PubMed] [Google Scholar]
  5. Alpert N. R., Mulieri L. A. The partitioning of altered mechanics in hypertrophied heart muscle between the sarcoplasmic reticulum and the contractile apparatus by means of myothermal measurements. Basic Res Cardiol. 1977 Mar-Jun;72(2-3):153–159. doi: 10.1007/BF01906354. [DOI] [PubMed] [Google Scholar]
  6. Bugnard L. The relation between total and initial heat in single muscle twitches. J Physiol. 1934 Nov 12;82(4):509–519. doi: 10.1113/jphysiol.1934.sp003203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curtin N. A., Woledge R. C. Energy changes and muscular contraction. Physiol Rev. 1978 Jul;58(3):690–761. doi: 10.1152/physrev.1978.58.3.690. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
  9. Gibbs C. L. Changes in cardiac heat production with agents that alter contractility. Aust J Exp Biol Med Sci. 1967 Aug;45(4):379–392. doi: 10.1038/icb.1967.37. [DOI] [PubMed] [Google Scholar]
  10. Gibbs C. L., Gibson W. R. Effect of alterations in the stimulus rate upon energy output, tension development and tension-time integral of cardiac muscle in rabbits. Circ Res. 1970 Oct;27(4):611–618. doi: 10.1161/01.res.27.4.611. [DOI] [PubMed] [Google Scholar]
  11. Gibbs C. L., Gibson W. R. Effect of ouabain on the energy output of rabbit cardiac muscle. Circ Res. 1969 Jun;24(6):951–967. doi: 10.1161/01.res.24.6.951. [DOI] [PubMed] [Google Scholar]
  12. Gibbs C. L., Loiselle D. S., Wendt I. R. Activation heat in rabbit cardiac muscle. J Physiol. 1988 Jan;395:115–130. doi: 10.1113/jphysiol.1988.sp016911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibbs C. L., Mommaerts W. F., Ricchiuti N. V. Energetics of cardiac contractions. J Physiol. 1967 Jul;191(1):25–46. doi: 10.1113/jphysiol.1967.sp008235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbs C., Loiselle D. The energy output of tetanized cardiac muscle: species differences. Pflugers Arch. 1978 Jan 31;373(1):31–38. doi: 10.1007/BF00581146. [DOI] [PubMed] [Google Scholar]
  15. Hamrell B. B., Panaanan R., Trono J., Alpert N. R. A stable, sensitive, low-compliance capacitance force transducer. J Appl Physiol. 1975 Jan;38(1):190–193. doi: 10.1152/jappl.1975.38.1.190. [DOI] [PubMed] [Google Scholar]
  16. Homsher E., Kean C. J., Wallner A., Garibian-Sarian V. The time-course of energy balance in an isometric tetanus. J Gen Physiol. 1979 May;73(5):553–567. doi: 10.1085/jgp.73.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Homsher E., Mommaerts W. F., Ricchiuti N. V., Wallner A. Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol. 1972 Feb;220(3):601–625. doi: 10.1113/jphysiol.1972.sp009725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horiuti K., Higuchi H., Umazume Y., Konishi M., Okazaki O., Kurihara S. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J Muscle Res Cell Motil. 1988 Apr;9(2):156–164. doi: 10.1007/BF01773737. [DOI] [PubMed] [Google Scholar]
  19. KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
  20. Lado M. G., Sheu S. S., Fozzard H. A. Effects of tonicity on tension and intracellular sodium and calcium activities in sheep heart. Circ Res. 1984 May;54(5):576–585. doi: 10.1161/01.res.54.5.576. [DOI] [PubMed] [Google Scholar]
  21. Langer G. A. Sodium exchange in dog ventricular muscle. Relation to frequency of contraction and its possible role in the control of myocardial contractility. J Gen Physiol. 1967 May;50(5):1221–1239. doi: 10.1085/jgp.50.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li T., Sperelakis N., Teneick R. E., Solaro R. J. Effects of diacetyl monoxime on cardiac excitation-contraction coupling. J Pharmacol Exp Ther. 1985 Mar;232(3):688–695. [PubMed] [Google Scholar]
  23. Mulieri L. A., Luhr G., Trefry J., Alpert N. R. Metal-film thermopiles for use with rabbit right ventricular papillary muscles. Am J Physiol. 1977 Nov;233(5):C146–C156. doi: 10.1152/ajpcell.1977.233.5.C146. [DOI] [PubMed] [Google Scholar]
  24. Pierce G. N., Philipson K. D., Langer G. A. Passive calcium-buffering capacity of a rabbit ventricular homogenate preparation. Am J Physiol. 1985 Sep;249(3 Pt 1):C248–C255. doi: 10.1152/ajpcell.1985.249.3.C248. [DOI] [PubMed] [Google Scholar]
  25. Wiggins J. R., Reiser J., Fitzpatrick D. F., Bergey J. L. Inotropic actions of diacetyl monoxime in cat ventricular muscle. J Pharmacol Exp Ther. 1980 Feb;212(2):217–224. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES