Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Aug;415:69–83. doi: 10.1113/jphysiol.1989.sp017712

Ca2(+)-activated K+ channels in human B lymphocytes and rat thymocytes.

M P Mahaut-Smith 1, L C Schlichter 1
PMCID: PMC1189167  PMID: 2640471

Abstract

1. Previous evidence for the existence of Ca2(+)-activated K+ channels in lymphocytes comes from measurements using voltage-sensitive dyes and from tracer flux studies. We have now directly measured these channels in human tonsillar B lymphocytes and rat thymocytes in single-channel recordings from cell-attached and excised patches. 2. In cell-attached recordings, intracellular Ca2+ was raised by either ionomycin or replacement of external Ca2+ following incubation in Ca2(+)-free medium. Indo-1 measurements during the Ca2(+)-replacement technique showed that [Ca2+]i rose from approximately 90 to 260 nM. Both techniques activated two channels of approximately 25 and 8 pS (slope conductance at 0 mV applied, with 140 mM-K+ in the pipette). Over 90% of patches displayed this activity, indicating a high density of these channels in the membrane. 3. Both channels reversed near the K+ equilibrium potential with either KCl or potassium aspartate in the pipette, when the cells were bathed in normal or high-K+ saline. Therefore, these channels are selective for K+. 4. The larger channel was studied in more detail. It displayed inward rectification in symmetrical K+ solutions. The open-channel probability was weakly dependent on membrane potential. 5. Ca2(+)-dependent K+ channels were also recorded from excised, inside-out membrane patches. The threshold for activation was 200-300 nM [Ca2+i]. 6. Patch excision altered some characteristics of IK(Ca). Channels were activated in fewer than 50% of patches and the main conductance level was approximately 34 pS (at -80 mV). The duration of single-channel events was shorter than in cell-attached patches; kinetic analysis suggested that this was due to the loss of an open state in excised patches. 7. We conclude that B and T lymphocytes have K(+)-selective channels which are activated by internal [Ca2+] in the physiological range and which will influence the membrane potential during cell activation.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bregestovski P., Redkozubov A., Alexeev A. Elevation of intracellular calcium reduces voltage-dependent potassium conductance in human T cells. 1986 Feb 27-Mar 5Nature. 319(6056):776–778. doi: 10.1038/319776a0. [DOI] [PubMed] [Google Scholar]
  2. Choquet D., Sarthou P., Primi D., Cazenave P. A., Korn H. Cyclic AMP-modulated potassium channels in murine B cells and their precursors. Science. 1987 Mar 6;235(4793):1211–1214. doi: 10.1126/science.2434998. [DOI] [PubMed] [Google Scholar]
  3. Felber S. M., Brand M. D. Early plasma-membrane-potential changes during stimulation of lymphocytes by concanavalin A. Biochem J. 1983 Mar 15;210(3):885–891. doi: 10.1042/bj2100885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukushima Y., Hagiwara S., Henkart M. Potassium current in clonal cytotoxic T lymphocytes from the mouse. J Physiol. 1984 Jun;351:645–656. doi: 10.1113/jphysiol.1984.sp015268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grinstein S., Cohen S. Cytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/H+ exchange. J Gen Physiol. 1987 Feb;89(2):185–213. doi: 10.1085/jgp.89.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grinstein S., Cohen S., Sarkadi B., Rothstein A. Induction of 86Rb fluxes by Ca2+ and volume changes in thymocytes and their isolated membranes. J Cell Physiol. 1983 Sep;116(3):352–362. doi: 10.1002/jcp.1041160313. [DOI] [PubMed] [Google Scholar]
  7. Grinstein S., Dupre A., Rothstein A. Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol. 1982 May;79(5):849–868. doi: 10.1085/jgp.79.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grygorczyk R., Schwarz W. Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium. 1983 Dec;4(5-6):499–510. doi: 10.1016/0143-4160(83)90025-8. [DOI] [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Gukovskaya A. S., Zinchenko V. P. The effects of ionophore A23187 and concanavalin A on the membrane potential of human peripheral blood lymphocytes and rat thymocytes. Biochim Biophys Acta. 1985 May 28;815(3):433–440. doi: 10.1016/0005-2736(85)90371-2. [DOI] [PubMed] [Google Scholar]
  11. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Kiefer H., Blume A. J., Kaback H. R. Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2200–2204. doi: 10.1073/pnas.77.4.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuno M., Goronzy J., Weyand C. M., Gardner P. Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature. 1986 Sep 18;323(6085):269–273. doi: 10.1038/323269a0. [DOI] [PubMed] [Google Scholar]
  15. Lewis R. S., Cahalan M. D. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science. 1988 Feb 12;239(4841 Pt 1):771–775. doi: 10.1126/science.2448877. [DOI] [PubMed] [Google Scholar]
  16. Lichtman M. A., Jackson A. H., Peck W. A. Lymphocyte monovalent cation metabolism: cell volume, cation content and cation transport. J Cell Physiol. 1972 Dec;80(3):383–396. doi: 10.1002/jcp.1040800309. [DOI] [PubMed] [Google Scholar]
  17. MacDougall S. L., Grinstein S., Gelfand E. W. Activation of Ca2+-dependent K+ channels in human B lymphocytes by anti-immunoglobulin. J Clin Invest. 1988 Feb;81(2):449–454. doi: 10.1172/JCI113340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marty A. Blocking of large unitary calcium-dependent potassium currents by internal sodium ions. Pflugers Arch. 1983 Feb;396(2):179–181. doi: 10.1007/BF00615524. [DOI] [PubMed] [Google Scholar]
  19. Rink T. J., Deutsch C. Calcium-activated potassium channels in lymphocytes. Cell Calcium. 1983 Dec;4(5-6):463–473. doi: 10.1016/0143-4160(83)90022-2. [DOI] [PubMed] [Google Scholar]
  20. Schlichter L., Sidell N., Hagiwara S. Potassium channels mediate killing by human natural killer cells. Proc Natl Acad Sci U S A. 1986 Jan;83(2):451–455. doi: 10.1073/pnas.83.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tatham P. E., O'Flynn K., Linch D. C. The relationship between mitogen-induced membrane potential changes and intracellular free calcium in human T-lymphocytes. Biochim Biophys Acta. 1986 Apr 14;856(2):202–211. doi: 10.1016/0005-2736(86)90029-5. [DOI] [PubMed] [Google Scholar]
  22. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  23. Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
  24. Wilson H. A., Chused T. M. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements. J Cell Physiol. 1985 Oct;125(1):72–81. doi: 10.1002/jcp.1041250110. [DOI] [PubMed] [Google Scholar]
  25. Wilson H. A., Greenblatt D., Poenie M., Finkelman F. D., Tsien R. Y. Crosslinkage of B lymphocyte surface immunoglobulin by anti-Ig or antigen induces prolonged oscillation of intracellular ionized calcium. J Exp Med. 1987 Aug 1;166(2):601–606. doi: 10.1084/jem.166.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES