Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Aug;415:409–422. doi: 10.1113/jphysiol.1989.sp017728

Evidence by calorimetry for an activation of sodium-hydrogen exchange of young rat skeletal muscle in hypertonic media.

A Chinet 1, P Giovannini 1
PMCID: PMC1189183  PMID: 2640465

Abstract

1. The rate of energy dissipation associated with Na(+)-H+ exchange in isolated, superfused soleus muscles from young rats was measured with an isothermal microcalorimeter during quasi-stationary states of oxidative metabolism. 2. Under normal physiological conditions, amiloride, an inhibitor of the Na(+)-H+ exchange across plasma membranes, had no measurable effect on the specific rate of muscle heat production (E); the ouabain-suppressible part of E was identical whether amiloride was absent or present. 3. E was increased under hyperosmotic conditions and the difference with respect to control (excess E) was proportional to the degree of hyperosmolarity of the superfusate. It was 48% of basal E during a +100 mosM stress (with no change of extracellular Na+ concentration, Na+o). Inhibition of Ca2+ release into the sarcoplasm with sodium dantrolene (10(-5) M) or tetracaine (5 x 10(-5) M) suppressed a substantial part (65 and 53%, respectively) of the steady-state excess E (1.2 mW (g wet weight)-1) induced by the +100 mosM stress. Practically 100% of excess E was suppressed in the nominal absence of extracellular sodium (Na+o = 0, Li+ substitution) or under 15 mM-Na+o, and excess E was enhanced when Na+o was increased (hyperosomolarity by addition of Na2SO4 instead of sucrose). 4. Under hyperosmotic conditions, amiloride at the 5 x 10(-7) M concentration had no effect on excess E whereas at 10(-4) M it induced a significant decrease of excess E. The absolute effect of 10(-4) M-amiloride was -0.34 mW (g wet weight)-1 (equal to 28% of the excess E due to a +100 mosM-sucrose stress and to 14% of the excess E due to a +100 mosM-Na2SO4 stress). It was left unaltered in the presence of dantrolene and was independent of the way the +100 mosM stress was obtained (i.e. 100 mM-sucrose or 50 mM-Na2SO4). It was suppressed at Na+o = 0-15 mM and could be mimicked by guanochlor, another potent inhibitor of Na(+)-H+ exchange. In the presence of 10(-4) M-amiloride, the ouabain-suppressible E was significantly reduced. In the presence of ouabain, amiloride had no effect. 5. Muscle tissue space available to [3H]inulin was measured in parallel experiments. It was 23.3% under control conditions and 30.6% after a 2 h exposure of the muscle to a +100 mosM-Na2SO4 stress.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Thomas R. C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol. 1977 Dec;273(1):295–316. doi: 10.1113/jphysiol.1977.sp012095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  3. Biron R., Burger A., Chinet A., Clausen T., Dubois-Ferrière R. Thyroid hormones and the energetics of active sodium-potassium transport in mammalian skeletal muscles. J Physiol. 1979 Dec;297(0):47–60. doi: 10.1113/jphysiol.1979.sp013026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chinet A., Clausen T., Girardier L. Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat. J Physiol. 1977 Feb;265(1):43–61. doi: 10.1113/jphysiol.1977.sp011704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clausen T., Dahl-Hansen A. B., Elbrink J. The effect of hyperosmolarity and insulin on resting tension and calcium fluxes in rat soleus muscle. J Physiol. 1979 Jul;292:505–526. doi: 10.1113/jphysiol.1979.sp012868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DYDYNSKA M., WILKIE D. R. THE OSMOTIC PROPERTIES OF STRIATED MUSCLE FIBERS IN HYPERTONIC SOLUTIONS. J Physiol. 1963 Nov;169:312–329. doi: 10.1113/jphysiol.1963.sp007258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frelin C., Vigne P., Barbry P., Lazdunski M. Interaction of guanidinium and guanidinium derivatives with the Na+/H+ exchange system. Eur J Biochem. 1986 Jan 15;154(2):241–245. doi: 10.1111/j.1432-1033.1986.tb09388.x. [DOI] [PubMed] [Google Scholar]
  8. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  9. Kobayashi N., Yonemura K. The extracellular space in red and white muscles of the rat. Jpn J Physiol. 1967 Dec 15;17(6):698–707. doi: 10.2170/jjphysiol.17.698. [DOI] [PubMed] [Google Scholar]
  10. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  11. Soltoff S. P., Mandel L. J. Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science. 1983 May 27;220(4600):957–958. doi: 10.1126/science.6302840. [DOI] [PubMed] [Google Scholar]
  12. Yamada K. The increase in the rate of heat production of frog's skeletal muscle caused by hypertonic solutions. J Physiol. 1970 May;208(1):49–64. doi: 10.1113/jphysiol.1970.sp009105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES