Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Aug;415:487–502. doi: 10.1113/jphysiol.1989.sp017733

Sodium-dependent membrane current induced by carbachol in single guinea-pig ventricular myocytes.

K Matsumoto 1, A J Pappano 1
PMCID: PMC1189188  PMID: 2561791

Abstract

1. In the presence of either barium (0.2 mM) or caesium (20 mM), carbachol (3-300 microM) depolarized isolated guinea-pig ventricular myocytes. Carbachol induced an inward current under voltage clamp at a holding potential equal to the resting potential (-75 mV). 2. Acetylcholine and oxotremorine also evoked an inward current but were less effective than carbachol. Atropine (0.3 microM) prevented the depolarization and inward current induced by carbachol and acetylcholine but not by oxotremorine. Moreover, oxotremorine, but not carbachol, induced an inward current in the absence of extracellular sodium. 3. Carbachol increased membrane chord conductance when it induced an inward current. These effects were recorded under experimental conditions that suppressed the voltage- and time-dependent sodium current (tetrodotoxin) and calcium current (cadmium), the inwardly rectifying potassium current, iK1 (caesium, barium and tetraethylammonium) and the current generated by the sodium-potassium pump (zero external potassium). 4. Under these same experimental conditions, the steady-state I-V relationship in the presence of carbachol was subtracted from that in its absence. The apparent reversal potential (Erev) was 25 mV with extracellular Na+ ([ Na+]o) at 143 mM and intracellular Na+ ([Na+]i) at 11 mM. Replacement of [Na+]o by N-methyl-D-glucamine was associated with a shift of the apparent Erev to more negative voltages by approximately 61 mV per tenfold change of [Na+]o. 5. Isoprenaline induced an inward current in ventricular myocytes that depended upon sodium entry, required the accumulation of cyclic AMP and which was partially suppressed by acetylcholine (Egan, Noble, Noble, Powell, Twist & Yamaoka, 1988). In contrast to the current evoked by beta-adrenoceptor agonist, the current induced by muscarinic agonist was smaller and sustained. Moreover, the carbachol-induced current was not suppressed by prior addition of isoprenaline. 6. The findings are consistent with the mechanism that carbachol activates a plasma membrane ion channel that admits sodium and thereby increases intracellular sodium activity. The estimated increase of intracellular sodium activity from electrophysiological data agrees quantitatively with that obtained from measurements with sodium-sensitive microelectrodes (Korth & Kühlkamp, 1985). 7. The ability of carbachol to increase sodium influx may be the first step in a series of reactions that eventually alters sodium-calcium exchange and could account for catecholamine-independent stimulation of developed force in mammalian ventricle.

Full text

PDF
487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  2. Boyett M. R., Roberts A. The fade of the response to acetylcholine at the rabbit isolated sino-atrial node. J Physiol. 1987 Dec;393:171–194. doi: 10.1113/jphysiol.1987.sp016818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke G. H., Calaresu F. R. An experimental analysis of the tachycardia that follows vagal stimulation. J Physiol. 1972 Oct;226(2):491–510. doi: 10.1113/jphysiol.1972.sp009995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmeliet E., Mubagwa K. Desensitization of the acetylcholine-induced increase of potassium conductance in rabbit cardiac Purkinje fibres. J Physiol. 1986 Feb;371:239–255. doi: 10.1113/jphysiol.1986.sp015971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiba S., Levy M. N., Zieske H. Chronotropic response to acetylcholine injected into the sinus node artery of the isolated atrium of the dog. Cardiovasc Res. 1975 Jan;9(1):127–133. doi: 10.1093/cvr/9.1.127. [DOI] [PubMed] [Google Scholar]
  6. Court J. A., Fowler C. J., Candy J. M., Hoban P. R., Smith C. J. Raising the ambient potassium ion concentration enhances carbachol stimulated phosphoinositide hydrolysis in rat brain hippocampal and cerebral cortical miniprisms. Naunyn Schmiedebergs Arch Pharmacol. 1986 Sep;334(1):10–16. doi: 10.1007/BF00498734. [DOI] [PubMed] [Google Scholar]
  7. Egan T. M., Noble D., Noble S. J., Powell T., Twist V. W., Yamaoka K. On the mechanism of isoprenaline- and forskolin-induced depolarization of single guinea-pig ventricular myocytes. J Physiol. 1988 Jun;400:299–320. doi: 10.1113/jphysiol.1988.sp017121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Endoh M., Maruyama M., Iijima T. Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. Am J Physiol. 1985 Aug;249(2 Pt 2):H309–H320. doi: 10.1152/ajpheart.1985.249.2.H309. [DOI] [PubMed] [Google Scholar]
  9. Endoh M., Tamura K., Hashimoto K. Negative and positive inotropic responses of the blood-perfused canine papillary muscle to acetylcholine. J Pharmacol Exp Ther. 1970 Nov;175(2):377–387. [PubMed] [Google Scholar]
  10. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  11. Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985 Dec;44(15):2970–2976. [PubMed] [Google Scholar]
  12. Fischmeister R., Hartzell H. C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J Physiol. 1986 Jul;376:183–202. doi: 10.1113/jphysiol.1986.sp016148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gadsby D. C., Kimura J., Noma A. Voltage dependence of Na/K pump current in isolated heart cells. Nature. 1985 May 2;315(6014):63–65. doi: 10.1038/315063a0. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hescheler J., Kameyama M., Trautwein W. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch. 1986 Aug;407(2):182–189. doi: 10.1007/BF00580674. [DOI] [PubMed] [Google Scholar]
  16. Inoue R., Kitamura K., Kuriyama H. Acetylcholine activates single sodium channels in smooth muscle cells. Pflugers Arch. 1987 Sep;410(1-2):69–74. doi: 10.1007/BF00581898. [DOI] [PubMed] [Google Scholar]
  17. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
  18. Korth M., Kühlkamp V. Muscarinic receptors mediate negative and positive inotropic effects in mammalian ventricular myocardium: differentiation by agonists. Br J Pharmacol. 1987 Jan;90(1):81–90. doi: 10.1111/j.1476-5381.1987.tb16827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  20. Leung E., Johnston C. I., Woodcock E. A. Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sci. 1986 Dec 8;39(23):2215–2220. doi: 10.1016/0024-3205(86)90399-1. [DOI] [PubMed] [Google Scholar]
  21. Lindmar R., Löffelholz K., Sandmann J. Characterization of choline efflux from the perfused heart at rest and after muscarine receptor activation. Naunyn Schmiedebergs Arch Pharmacol. 1986 Mar;332(3):224–229. doi: 10.1007/BF00504858. [DOI] [PubMed] [Google Scholar]
  22. Löffelholz K., Pappano A. J. The parasympathetic neuroeffector junction of the heart. Pharmacol Rev. 1985 Mar;37(1):1–24. [PubMed] [Google Scholar]
  23. Oron Y., Dascal N., Nadler E., Lupu M. Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature. 1985 Jan 10;313(5998):141–143. doi: 10.1038/313141a0. [DOI] [PubMed] [Google Scholar]
  24. Pappano A. J., Matsumoto K., Tajima T., Agnarsson U., Webb W. Pertussis toxin-insensitive mechanism for carbachol-induced depolarization and positive inotropic effect in heart muscle. Trends Pharmacol Sci. 1988 Feb;Suppl:35–39. [PubMed] [Google Scholar]
  25. Pappano A. J. Sodium-dependent depolarization of noninnervated embryonic chick heart by acetylcholine. J Pharmacol Exp Ther. 1972 Feb;180(2):340–350. [PubMed] [Google Scholar]
  26. Pfaffinger P. J., Martin J. M., Hunter D. D., Nathanson N. M., Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature. 1985 Oct 10;317(6037):536–538. doi: 10.1038/317536a0. [DOI] [PubMed] [Google Scholar]
  27. Rardon D. P., Pappano A. J. Carbachol inhibits electrophysiological effects of cyclic AMP in ventricular myocytes. Am J Physiol. 1986 Sep;251(3 Pt 2):H601–H611. doi: 10.1152/ajpheart.1986.251.3.H601. [DOI] [PubMed] [Google Scholar]
  28. Sasaki K., Sato M. A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature. 1987 Jan 15;325(6101):259–262. doi: 10.1038/325259a0. [DOI] [PubMed] [Google Scholar]
  29. Sorota S., Tsuji Y., Tajima T., Pappano A. J. Pertussis toxin treatment blocks hyperpolarization by muscarinic agonists in chick atrium. Circ Res. 1985 Nov;57(5):748–758. doi: 10.1161/01.res.57.5.748. [DOI] [PubMed] [Google Scholar]
  30. Tajima T., Tsuji Y., Brown J. H., Pappano A. J. Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ Res. 1987 Sep;61(3):436–445. doi: 10.1161/01.res.61.3.436. [DOI] [PubMed] [Google Scholar]
  31. Toda N., West T. C. Interactions of K, Na, and vagal stimulation in the S-A node of the rabbit. Am J Physiol. 1967 Feb;212(2):416–423. doi: 10.1152/ajplegacy.1967.212.2.416. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES