Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Sep;416:49–66. doi: 10.1113/jphysiol.1989.sp017748

Organization of electrical activity in the canine pyloric canal.

K M Sanders 1, F Vogalis 1
PMCID: PMC1189202  PMID: 2607460

Abstract

1. The electrical activity of the canine gastroduodenal junction was investigated using cross-sectional muscle preparations and intracellular recording techniques. 2. Spontaneous electrical slow waves were recorded from antral and pyloric cells but not from duodenal cells adjacent to the pyloric region. Slow waves were generated in the antrum and propagated to the pyloric region via the circular layer. Pyloric slow waves consisted of an upstroke phase, a plateau phase and oscillations superimposed upon the plateau, whereas antral slow waves had smooth plateau potentials. 3. Within the pylorus slow waves decayed in amplitude with distance from the myenteric border of the circular muscle; the majority of pyloric circular cells were normally electrically quiescent. 4. The longitudinal muscle in the pylorus was electrically coupled and paced by the circular muscle. In longitudinal cells slow waves were usually of long duration with multiple spikes superimposed upon the plateau phase. 5. Nifedipine (10(-8) to 10(-5) M) decreased slow waves amplitude and duration. Tetraethylammonium ions (TEA; 10 mM) increased the duration of slow waves, caused spiking activity during the plateau phase and also elicited spiking in the quiescent regions. 6. The results suggest that gastric slow waves pace the myenteric portion of the circular muscle layer and the longitudinal layer of the pylorus, but do not traverse the gastroduodenal junction, nor pace the majority of cells within the circular muscle of the pylorus. Other excitatory mechanisms are necessary to activate these regions and to co-ordinate their motility with gastric motility.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeberhard P., Walther M. Results of a controlled randomized trial of proximal gastric vagotomy with and without pyloroplasty. Br J Surg. 1978 Sep;65(9):634–636. doi: 10.1002/bjs.1800650914. [DOI] [PubMed] [Google Scholar]
  2. BASS P., CODE C. F., LAMBERTEH Electric activity of gastroduodenal junction. Am J Physiol. 1961 Oct;201:587–592. doi: 10.1152/ajplegacy.1961.201.4.587. [DOI] [PubMed] [Google Scholar]
  3. BORTOFF A., WEG N. TRANSMISSION OF ELECTRICAL ACTIVITY THROUGH THE GASTRODUODENAL JUNCTION. Am J Physiol. 1965 Mar;208:531–536. doi: 10.1152/ajplegacy.1965.208.3.531. [DOI] [PubMed] [Google Scholar]
  4. Bauer A. J., Publicover N. G., Sanders K. M. Origin and spread of slow waves in canine gastric antral circular muscle. Am J Physiol. 1985 Dec;249(6 Pt 1):G800–G806. doi: 10.1152/ajpgi.1985.249.6.G800. [DOI] [PubMed] [Google Scholar]
  5. Bauer A. J., Reed J. B., Sanders K. M. Slow wave heterogeneity within the circular muscle of the canine gastric antrum. J Physiol. 1985 Sep;366:221–232. doi: 10.1113/jphysiol.1985.sp015793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benham C. D., Bolton T. B., Lang R. J., Takewaki T. Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery. J Physiol. 1986 Feb;371:45–67. doi: 10.1113/jphysiol.1986.sp015961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benham C. D., Bolton T. B. Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum. J Physiol. 1983 Jul;340:469–486. doi: 10.1113/jphysiol.1983.sp014774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bortoff A., Davis R. S. Myogenic transmission of antral slow waves across the gastroduodenal junction in situ. Am J Physiol. 1968 Oct;215(4):889–897. doi: 10.1152/ajplegacy.1968.215.4.889. [DOI] [PubMed] [Google Scholar]
  9. Carlson H. C., Code C. F., Nelson R. A. Motor action of the canine gastroduodenal junction: a cineradiographic, pressure, and electric study. Am J Dig Dis. 1966 Feb;11(2):155–172. doi: 10.1007/BF02239239. [DOI] [PubMed] [Google Scholar]
  10. Cheung D. W., Daniel E. E. Comparative study of the smooth muscle layers of the rabbit duodenum. J Physiol. 1980 Dec;309:13–27. doi: 10.1113/jphysiol.1980.sp013490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clarke R. J., Alexander-Williams J. The effect of preserving antral innervation and of a pyloroplasty on gastric emptying after vagotomy in man. Gut. 1973 Apr;14(4):300–307. doi: 10.1136/gut.14.4.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daniel E. E. The electrical and contractile activity of the pyloric region in dogs and the effects of drugs. Gastroenterology. 1965 Oct;49(4):403–418. [PubMed] [Google Scholar]
  13. Deloof S., Rousseau J. P. Neural control of electrical gastric activity in response to inflation of the antrum in the rabbit. J Physiol. 1985 Oct;367:13–25. doi: 10.1113/jphysiol.1985.sp015811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujii K., Inoue R., Yamanaka K., Yoshitomi T. Effects of calcium antagonists on smooth muscle membranes of the canine stomach. Gen Pharmacol. 1985;16(3):217–221. doi: 10.1016/0306-3623(85)90072-2. [DOI] [PubMed] [Google Scholar]
  15. Fujii Y. Electrophysiological studies on gastroduodenal junction of the guinea pig. Am J Physiol. 1971 Aug;221(2):413–420. doi: 10.1152/ajplegacy.1971.221.2.413. [DOI] [PubMed] [Google Scholar]
  16. Hinder R. A., Bremner C. G. Relative role of pyloroplasty size, truncal vagotomy, and milk meal volume in canine gastric emptying. Am J Dig Dis. 1978 Mar;23(3):210–216. doi: 10.1007/BF01072319. [DOI] [PubMed] [Google Scholar]
  17. Hinder R. A. Individual and combined roles of the pylorus and the antrum in the canine gastric emptying of a liquid and a digestible solid. Gastroenterology. 1983 Feb;84(2):281–286. [PubMed] [Google Scholar]
  18. Kelly K. A., Code C. F., Elveback L. R. Patterns of canine gastric electrical activity. Am J Physiol. 1969 Aug;217(2):461–470. doi: 10.1152/ajplegacy.1969.217.2.461. [DOI] [PubMed] [Google Scholar]
  19. Loirand G., Pacaud P., Mironneau C., Mironneau J. Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1986 Nov;407(5):566–568. doi: 10.1007/BF00657519. [DOI] [PubMed] [Google Scholar]
  20. MCCOY E. J., BASS P. CHRONIC ELECTRICAL ACTIVITY OF GASTRODUODENAL AREA: EFFECTS OF FOOD AND CERTAIN CATECHOLAMINES. Am J Physiol. 1963 Sep;205:439–445. doi: 10.1152/ajplegacy.1963.205.3.439. [DOI] [PubMed] [Google Scholar]
  21. Miller J., Kauffman G., Elashoff J., Ohashi H., Carter D., Meyer J. H. Search for resistances controlling canine gastric emptying of liquid meals. Am J Physiol. 1981 Nov;241(5):G403–G415. doi: 10.1152/ajpgi.1981.241.5.G403. [DOI] [PubMed] [Google Scholar]
  22. Mitra R., Morad M. Ca2+ and Ca2+-activated K+ currents in mammalian gastric smooth muscle cells. Science. 1985 Jul 19;229(4710):269–272. doi: 10.1126/science.2409600. [DOI] [PubMed] [Google Scholar]
  23. SMITH A. W., CODE C. F., SCHLEGEL J. F. Simultaneous cineradiographic and kymographic studies of human gastric antral motility. J Appl Physiol. 1957 Jul;11(1):12–16. doi: 10.1152/jappl.1957.11.1.12. [DOI] [PubMed] [Google Scholar]
  24. Sanders K. M., Bauer A. J. Ethyl alcohol interferes with excitation-contraction mechanisms of canine antral muscle. Am J Physiol. 1982 Mar;242(3):G222–G230. doi: 10.1152/ajpgi.1982.242.3.G222. [DOI] [PubMed] [Google Scholar]
  25. Schulze-Delrieu K., Brown C. K. Emptying of saline meals by the cat stomach as a function of pyloric resistance. Am J Physiol. 1985 Dec;249(6 Pt 1):G725–G732. doi: 10.1152/ajpgi.1985.249.6.G725. [DOI] [PubMed] [Google Scholar]
  26. Singer J. J., Walsh J. V., Jr Large-conductance Ca2+-activated K+ channels in freshly dissociated smooth muscle cells. Membr Biochem. 1986;6(2):83–110. doi: 10.3109/09687688609065445. [DOI] [PubMed] [Google Scholar]
  27. Suzuki H., Kuriyama H. Electrical and mechanical properties of longitudinal and circular muscles of the guinea-pig ileum. Jpn J Physiol. 1975;25(6):759–773. doi: 10.2170/jjphysiol.25.759. [DOI] [PubMed] [Google Scholar]
  28. Szurszewski J. H. A study of the canine gastric action potential in the presence of tetraethylammonium chloride. J Physiol. 1978 Apr;277:91–102. doi: 10.1113/jphysiol.1978.sp012262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor A. B., Kreulen D., Prosser C. L. Electron microscopy of the connective tissues between longitudinal and circular muscle of small intestine of cat. Am J Anat. 1977 Nov;150(3):427–441. doi: 10.1002/aja.1001500305. [DOI] [PubMed] [Google Scholar]
  30. Yoshino M., Someya T., Nishio A., Yabu H. Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: evidence for the existence of two types of Ca channels. Pflugers Arch. 1988 Feb;411(2):229–231. doi: 10.1007/BF00582322. [DOI] [PubMed] [Google Scholar]
  31. el-Sharkawy T. Y., Morgan K. G., Szurszewski J. H. Intracellular electrical activity of canine and human gastric smooth muscle. J Physiol. 1978 Jun;279:291–307. doi: 10.1113/jphysiol.1978.sp012345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES