Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Sep;416:123–140. doi: 10.1113/jphysiol.1989.sp017753

Effect of sympathetic nerves on composition and distensibility of cerebral arterioles in rats.

G L Baumbach 1, D D Heistad 1, J E Siems 1
PMCID: PMC1189207  PMID: 2607446

Abstract

1. The goals of this study were to examine the effects of chronic sympathetic denervation on the mechanics and composition of cerebral arterioles in normotensive Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). 2. We used an in vivo method to examine the mechanics of pial arterioles in 10- to 12-month-old, anaesthetized WKY and SHRSP that had undergone unilateral removal of the superior cervical ganglion at 1 month of age. Bilateral craniotomies were performed in each rat to expose pial arterioles in the innervated and denervated cerebral hemispheres. Arterioles were deactivated with EDTA. Incremental distensibility and stress-strain relationships were calculated from measurements of pial arteriolar pressure (servo null), diameter and cross-sectional area of the arteriolar wall. Point counting stereology was used to quantify volume density and cross-sectional area of individual components in the arteriolar wall. 3. Chronic sympathetic denervation reduced cross-sectional area of the arteriolar wall by 16 +/- 2% (mean +/- S.E. of mean; P less than 0.05) in WKY and 44 +/- 3% in SHRSP. During maximal dilatation with EDTA, incremental distensibility was reduced and the stress-strain curve was shifted to the left in denervated arterioles of SHRSP, but not WKY. These findings indicate that sympathetic denervation in SHRSP attenuates the development of hypertrophy in pial arterioles and reduces arteriolar distensibility. The ratio of non-distensible (collagen and basement membrane) to distensible (smooth muscle, elastin and endothelium) components was reduced in denervated arterioles in SHRSP, but not WKY. 4. Thus, sympathetic nerves have trophic effects on cerebral arterioles in WKY and, to a greater degree, in SHRSP. Sympathetic nerves also contribute to increases in distensibility of cerebral arterioles in SHRSP, but not WKY. The increase in arteriolar distensibility is accompanied by a disproportionate increase in the more compliant elements of cerebral arterioles.

Full text

PDF
123

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R. Recent studies on the structure and pathology of basement membranes. J Pathol. 1986 Aug;149(4):257–278. doi: 10.1002/path.1711490402. [DOI] [PubMed] [Google Scholar]
  2. Baumbach G. L., Dobrin P. B., Hart M. N., Heistad D. D. Mechanics of cerebral arterioles in hypertensive rats. Circ Res. 1988 Jan;62(1):56–64. doi: 10.1161/01.res.62.1.56. [DOI] [PubMed] [Google Scholar]
  3. Baumbach G. L., Walmsley J. G., Hart M. N. Composition and mechanics of cerebral arterioles in hypertensive rats. Am J Pathol. 1988 Dec;133(3):464–471. [PMC free article] [PubMed] [Google Scholar]
  4. Bergel D. H. The static elastic properties of the arterial wall. J Physiol. 1961 May;156(3):445–457. doi: 10.1113/jphysiol.1961.sp006686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bevan R. D. Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circ Res. 1975 Jul;37(1):14–19. doi: 10.1161/01.res.37.1.14. [DOI] [PubMed] [Google Scholar]
  6. Bevan R. D., Tsuru H., Bevan J. A. Cerebral artery mass in the rabbit is reduced by chronic sympathetic denervation. Stroke. 1983 May-Jun;14(3):393–396. doi: 10.1161/01.str.14.3.393. [DOI] [PubMed] [Google Scholar]
  7. Bevan R. D., Tsuru H. Functional and structural changes in the rabbit ear artery after sympathetic denervation. Circ Res. 1981 Aug;49(2):478–485. doi: 10.1161/01.res.49.2.478. [DOI] [PubMed] [Google Scholar]
  8. Bevan R. D., Tsuru H. Long-term denervation of vascular smooth muscle causes not only functional but structural change. Blood Vessels. 1979;16(2):109–112. [PubMed] [Google Scholar]
  9. Brayden J. E., Halpern W., Brann L. R. Biochemical and mechanical properties of resistance arteries from normotensive and hypertensive rats. Hypertension. 1983 Jan-Feb;5(1):17–25. doi: 10.1161/01.hyp.5.1.17. [DOI] [PubMed] [Google Scholar]
  10. Carew T. E., Vaishnav R. N., Patel D. J. Compressibility of the arterial wall. Circ Res. 1968 Jul;23(1):61–68. doi: 10.1161/01.res.23.1.61. [DOI] [PubMed] [Google Scholar]
  11. Cox R. H. Mechanics of canine iliac artery smooth muscle in vitro. Am J Physiol. 1976 Feb;230(2):462–470. doi: 10.1152/ajplegacy.1976.230.2.462. [DOI] [PubMed] [Google Scholar]
  12. Dobrin P. B., Rovick A. A. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol. 1969 Dec;217(6):1644–1651. doi: 10.1152/ajplegacy.1969.217.6.1644. [DOI] [PubMed] [Google Scholar]
  13. Fredriksson K., Kalimo H., Westergren I., Kåhrström J., Johansson B. B. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats. Effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol. 1987;74(3):259–268. doi: 10.1007/BF00688190. [DOI] [PubMed] [Google Scholar]
  14. Friedman S. M., Nakashima M., Mar M. A. Morphological assessment of vasoconstriction and vascular hypertrophy in sustained hypertension in the rat. Microvasc Res. 1971 Oct;3(4):416–425. doi: 10.1016/0026-2862(71)90043-4. [DOI] [PubMed] [Google Scholar]
  15. Fung Y. C. Elasticity of soft tissues in simple elongation. Am J Physiol. 1967 Dec;213(6):1532–1544. doi: 10.1152/ajplegacy.1967.213.6.1532. [DOI] [PubMed] [Google Scholar]
  16. Hart M. N., Heistad D. D., Brody M. J. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension. 1980 Jul-Aug;2(4):419–423. doi: 10.1161/01.hyp.2.4.419. [DOI] [PubMed] [Google Scholar]
  17. Kühn K., Glanville R. W., Babel W., Qian R. Q., Dieringer H., Voss T., Siebold B., Oberbäumer I., Schwarz U., Yamada Y. The structure of type IV collagen. Ann N Y Acad Sci. 1985;460:14–24. doi: 10.1111/j.1749-6632.1985.tb51153.x. [DOI] [PubMed] [Google Scholar]
  18. Lee R. M., Forrest J. B., Garfield R. E., Daniel E. E. Comparison of blood vessel wall dimensions in normotensive hypertensive rats by histometric and morphometric methods. Blood Vessels. 1983;20(5):245–254. doi: 10.1159/000158477. [DOI] [PubMed] [Google Scholar]
  19. Mayne R. Collagenous proteins of blood vessels. Arteriosclerosis. 1986 Nov-Dec;6(6):585–593. doi: 10.1161/01.atv.6.6.585. [DOI] [PubMed] [Google Scholar]
  20. Rusterholz D. B., Mueller S. M. Sympathetic nerves exert a chronic influence on the intact vasculature that is age related. Ann Neurol. 1982 Apr;11(4):365–371. doi: 10.1002/ana.410110408. [DOI] [PubMed] [Google Scholar]
  21. SHORT D. S., THOMSON A. D. The arteries of the small intestine in systemic hypertension. J Pathol Bacteriol. 1959 Oct;78:321–334. doi: 10.1002/path.1700780202. [DOI] [PubMed] [Google Scholar]
  22. Sadoshima S., Busija D. W., Heistad D. D. Mechanisms of protection against stroke in stroke-prone spontaneously hypertensive rats. Am J Physiol. 1983 Mar;244(3):H406–H412. doi: 10.1152/ajpheart.1983.244.3.H406. [DOI] [PubMed] [Google Scholar]
  23. Wiederhielm C. A. Distensibility characteristics of small blood vessels. Fed Proc. 1965 Sep-Oct;24(5):1075–1084. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES