Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Oct;417:197–212. doi: 10.1113/jphysiol.1989.sp017797

Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices.

B A MacVicar 1, F W Tse 1
PMCID: PMC1189262  PMID: 2621591

Abstract

1. Intracellular and extracellular recordings were obtained from the CA3 area of rat hippocampal slices to study cellular and synaptic mechanisms underlying rhythmic slow activity (RSA). In all impaled CA3 pyramidal neurones, continuous applications of carbachol, a non-hydrolysable cholinergic agonist, induced first a brief non-rhythmic excitation and then periodic bursts of RSA which could persist for several hours. Each burst of RSA consisted of 4-10 Hz oscillatory depolarizations which had a rise time much slower than conventional EPSPs recorded in the same cell. 2. The carbachol-induced RSA was blocked by atropine; therefore the cholinergic stimulation involved muscarinic receptors. 3. Analyses of simultaneous recordings from pairs of neurones, or a neurone and a glial cell, or a neurone and the extracellular field, indicated that carbachol-induced RSA was synchronous in a large population of CA3 pyramidal neurones. 4. Complete removal of the dentate gyrus and CA1 region did not block carbachol-induced RSA in CA3, but applications of tetrodotoxin or inorganic Ca2+ channel blockers (Cd2+, Co2+ or Mn2+) abolished carbachol-induced RSA. This suggested that the RSA involved propagation of action potentials through a local synaptic network in the CA3 area. 5. Carbachol-induced RSA was reversibly blocked by a broad-spectrum excitatory amino acid antagonist (kynurenic acid), but not by two selective N-methyl-D-aspartate (NMDA) antagonists (DL-2-amino-7-phosphonoheptanoic acid or DL-2-amino-5-phosphonovaleric acid), a GABAA antagonist (bicuculline), or a GABAB antagonist (phaclofen), suggesting that carbachol-induced RSA involved primarily non-NMDA excitatory amino acid, but not GABAergic, synapses. 6. Raising extracellular [Ca2+] beyond 7 mM, which should significantly weaken the polysynaptic recurrent excitation among CA3 pyramidal neurones, abolished carbachol-induced RSA. This suggests that the recurrent excitation among CA3 pyramidal neurones is necessary for carbachol-induced RSA in the CA3 area. However, our experiments cannot clarify whether the recurrent excitation, alone, is sufficient for carbachol-induced RSA.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. W., Lewis D. V., Swartzwelder H. S., Wilson W. A. Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 1986 Nov 19;398(1):215–219. doi: 10.1016/0006-8993(86)91274-6. [DOI] [PubMed] [Google Scholar]
  2. Ben-Ari Y., Gho M. Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J Physiol. 1988 Oct;404:365–384. doi: 10.1113/jphysiol.1988.sp017294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benardo L. S., Foster R. E. Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull. 1986 Dec;17(6):773–784. doi: 10.1016/0361-9230(86)90089-4. [DOI] [PubMed] [Google Scholar]
  4. Benardo L. S., Prince D. A. Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res. 1982 Oct 14;249(2):315–331. doi: 10.1016/0006-8993(82)90066-x. [DOI] [PubMed] [Google Scholar]
  5. Bland B. H., Colom L. V., Konopacki J., Roth S. H. Intracellular records of carbachol-induced theta rhythm in hippocampal slices. Brain Res. 1988 May 3;447(2):364–368. doi: 10.1016/0006-8993(88)91141-9. [DOI] [PubMed] [Google Scholar]
  6. Bland B. H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol. 1986;26(1):1–54. doi: 10.1016/0301-0082(86)90019-5. [DOI] [PubMed] [Google Scholar]
  7. Casullo J., Krnjević K. Glial potentials in hippocampus. Can J Physiol Pharmacol. 1987 May;65(5):847–855. doi: 10.1139/y87-136. [DOI] [PubMed] [Google Scholar]
  8. Christian E. P., Dudek F. E. Characteristics of local excitatory circuits studied with glutamate microapplication in the CA3 area of rat hippocampal slices. J Neurophysiol. 1988 Jan;59(1):90–109. doi: 10.1152/jn.1988.59.1.90. [DOI] [PubMed] [Google Scholar]
  9. Dingledine R., Hynes M. A., King G. L. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol. 1986 Nov;380:175–189. doi: 10.1113/jphysiol.1986.sp016279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dutar P., Nicoll R. A. A physiological role for GABAB receptors in the central nervous system. Nature. 1988 Mar 10;332(6160):156–158. doi: 10.1038/332156a0. [DOI] [PubMed] [Google Scholar]
  11. FUJITA Y., SATO T. INTRACELLULAR RECORDS FROM HIPPOCAMPAL PYRAMIDAL CELLS IN RABBIT DURING THETA RHYTHM ACTIVITY. J Neurophysiol. 1964 Nov;27:1012–1025. doi: 10.1152/jn.1964.27.6.1011. [DOI] [PubMed] [Google Scholar]
  12. Gähwiler B. H., Brown D. A. Muscarine affects calcium-currents in rat hippocampal pyramidal cells in vitro. Neurosci Lett. 1987 May 19;76(3):301–306. doi: 10.1016/0304-3940(87)90419-8. [DOI] [PubMed] [Google Scholar]
  13. Hablitz J. J. Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol. 1984 May;51(5):1011–1027. doi: 10.1152/jn.1984.51.5.1011. [DOI] [PubMed] [Google Scholar]
  14. Johnston D., Brown T. H. Giant synaptic potential hypothesis for epileptiform activity. Science. 1981 Jan 16;211(4479):294–297. doi: 10.1126/science.7444469. [DOI] [PubMed] [Google Scholar]
  15. Konopacki J., Maciver M. B., Bland B. H., Roth S. H. Theta in hippocampal slices: relation to synaptic responses of dentate neurons. Brain Res Bull. 1987 Jan;18(1):25–27. doi: 10.1016/0361-9230(87)90029-3. [DOI] [PubMed] [Google Scholar]
  16. Kudo Y., Ogura A., Iijima T. Stimulation of muscarinic receptor in hippocampal neuron induces characteristic increase in cytosolic free Ca2+ concentration. Neurosci Lett. 1988 Mar 10;85(3):345–350. doi: 10.1016/0304-3940(88)90590-3. [DOI] [PubMed] [Google Scholar]
  17. Llinás R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988 Dec 23;242(4886):1654–1664. doi: 10.1126/science.3059497. [DOI] [PubMed] [Google Scholar]
  18. Llinás R., Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986 Jul;376:163–182. doi: 10.1113/jphysiol.1986.sp016147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacVicar B. A., Dudek F. E. Dye-coupling betwen CA3 pyramidal cells in slices of rat hippocampus. Brain Res. 1980 Sep 8;196(2):494–497. doi: 10.1016/0006-8993(80)90413-8. [DOI] [PubMed] [Google Scholar]
  20. MacVicar B. A., Dudek F. E. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science. 1981 Aug 14;213(4509):782–785. doi: 10.1126/science.6266013. [DOI] [PubMed] [Google Scholar]
  21. MacVicar B. A., Dudek F. E. Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res. 1980 Feb 17;184(1):220–223. doi: 10.1016/0006-8993(80)90602-2. [DOI] [PubMed] [Google Scholar]
  22. MacVicar B. A. Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J Neurosci Methods. 1984 Dec;12(2):133–139. doi: 10.1016/0165-0270(84)90012-8. [DOI] [PubMed] [Google Scholar]
  23. Madison D. V., Lancaster B., Nicoll R. A. Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci. 1987 Mar;7(3):733–741. doi: 10.1523/JNEUROSCI.07-03-00733.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McBain C. J., Boden P., Hill R. G. The kainate/quisqualate receptor antagonist, CNQX, blocks the fast component of spontaneous epileptiform activity in organotypic cultures of rat hippocampus. Neurosci Lett. 1988 Nov 11;93(2-3):341–345. doi: 10.1016/0304-3940(88)90106-1. [DOI] [PubMed] [Google Scholar]
  25. Miles R., Wong R. K. Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol. 1986 Apr;373:397–418. doi: 10.1113/jphysiol.1986.sp016055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miles R., Wong R. K. Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J Physiol. 1987 Jul;388:611–629. doi: 10.1113/jphysiol.1987.sp016634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miles R., Wong R. K. Single neurones can initiate synchronized population discharge in the hippocampus. Nature. 1983 Nov 24;306(5941):371–373. doi: 10.1038/306371a0. [DOI] [PubMed] [Google Scholar]
  28. Mody I., Lambert J. D., Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol. 1987 Mar;57(3):869–888. doi: 10.1152/jn.1987.57.3.869. [DOI] [PubMed] [Google Scholar]
  29. Núez A., García-Austt E., Buño W., Jr Intracellular theta-rhythm generation in identified hippocampal pyramids. Brain Res. 1987 Jul 28;416(2):289–300. doi: 10.1016/0006-8993(87)90909-7. [DOI] [PubMed] [Google Scholar]
  30. Ottersen O. P., Storm-Mathisen J. Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea-pig and Senegalese baboon (Papio papio), with a note on the distribution of gamma-aminobutyrate. Neuroscience. 1985 Nov;16(3):589–606. doi: 10.1016/0306-4522(85)90194-0. [DOI] [PubMed] [Google Scholar]
  31. Rutecki P. A., Lebeda F. J., Johnston D. Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol. 1985 Nov;54(5):1363–1374. doi: 10.1152/jn.1985.54.5.1363. [DOI] [PubMed] [Google Scholar]
  32. Stone T. W. Comparison of kynurenic acid and 2-APV suppression of epileptiform activity in rat hippocampal slices. Neurosci Lett. 1988 Jan 22;84(2):234–238. doi: 10.1016/0304-3940(88)90414-4. [DOI] [PubMed] [Google Scholar]
  33. Stone T. W., Connick J. H. Quinolinic acid and other kynurenines in the central nervous system. Neuroscience. 1985 Jul;15(3):597–617. doi: 10.1016/0306-4522(85)90063-6. [DOI] [PubMed] [Google Scholar]
  34. Traub R. D., Miles R., Wong R. K. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J Neurophysiol. 1987 Oct;58(4):739–751. doi: 10.1152/jn.1987.58.4.739. [DOI] [PubMed] [Google Scholar]
  35. Traub R. D., Miles R., Wong R. K., Schulman L. S., Schneiderman J. H. Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol. 1987 Oct;58(4):752–764. doi: 10.1152/jn.1987.58.4.752. [DOI] [PubMed] [Google Scholar]
  36. Traynelis S. F., Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol. 1988 Jan;59(1):259–276. doi: 10.1152/jn.1988.59.1.259. [DOI] [PubMed] [Google Scholar]
  37. Turner D. A. Waveform and amplitude characteristics of evoked responses to dendritic stimulation of CA1 guinea-pig pyramidal cells. J Physiol. 1988 Jan;395:419–439. doi: 10.1113/jphysiol.1988.sp016927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wong R. K., Traub R. D. Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J Neurophysiol. 1983 Feb;49(2):442–458. doi: 10.1152/jn.1983.49.2.442. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES