Abstract
Five groups of Wistar rats were subcutaneously infected with 5,000 L3 stage larvae of Nippostrongylus brasiliensis. Four groups were dosed orally with 5, 10, 15, and 20 mg/kg body weight of albendazole at 5 h postinfection, and one group served as an untreated control. The animals were euthanized and the intestines were dissected out 72 h postinfection and were incubated on a Baermann's apparatus to recover L4 stage larvae. No larvae were recovered from the 20 mg/kg albendazole-treated group, and means of 15, 33, and 175 L4 larvae were recovered from the 15, 10, and 5 mg/kg albendazole-treated groups, respectively. Levamisole and fenbendazole were also tested using the same procedure. Means of 100 and 1,887 L4 larvae were obtained from the 50 and 10 mg/kg of levamisole-treated groups respectively; while, 191 and 583 L4 larvae were recovered from rats treated with 50 and 10 mg/kg of fenbendazole, respectively. These results indicate that the L4 stage of N. brasiliensis could be useful for in vivo screening of new nematocide drugs.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chappell L. H. The interactions between drugs and the parasite surface. Parasitology. 1988;96 (Suppl):S167–S193. doi: 10.1017/s0031182000086029. [DOI] [PubMed] [Google Scholar]
- Coles G. C., McNeillie R. M. The response of nematodes in vivo and in vitro to some anthelmintics. J Helminthol. 1977;51(4):323–326. doi: 10.1017/s0022149x00007677. [DOI] [PubMed] [Google Scholar]
- Gordon S., Costa L., Incerti M., Manta E., Saldaña J., Domínguez L., Mariezcurrena R., Suescun L. Synthesis and in vitro anthelmintic activity against Nippostrongylus brasiliensis of new 2-amino-4-hydroxy-delta-valerolactam derivatives. Farmaco. 1997 Oct;52(10):603–608. [PubMed] [Google Scholar]
- Gyurik R. J., Chow A. W., Zaber B., Brunner E. L., Miller J. A., Villani A. J., Petka L. A., Parish R. C. Metabolism of albendazole in cattle, sheep, rats and mice. Drug Metab Dispos. 1981 Nov-Dec;9(6):503–508. [PubMed] [Google Scholar]
- HALEY A. J. Biology of the rat nematode, Nippostrongylus brasiliensis (Travassos, 1914). II. Preparastic stages and development in the laboratory rat. J Parasitol. 1962 Feb;48:13–23. [PubMed] [Google Scholar]
- Ishikawa N., Horii Y., Nawa Y. Inhibitory effects of concurrently present 'normal' Nippostrongylus brasiliensis worms on expulsion of 'damaged' worms and associated goblet cell changes in rats. Parasite Immunol. 1994 Jun;16(6):329–332. doi: 10.1111/j.1365-3024.1994.tb00357.x. [DOI] [PubMed] [Google Scholar]
- Jenkins D. C., Carrington T. S. An in vitro screen for anthelmintics employing Nippostrongylus brasiliensis in a defined medium. Vet Parasitol. 1982 Nov;11(2-3):223–230. doi: 10.1016/0304-4017(82)90045-0. [DOI] [PubMed] [Google Scholar]
- Jenkins D. C., Rapson E. B., Topley P. The aggregation response of Trichostrongylus colubriformis: a basis for the rapid interpretation of in vitro anthelmintic screens. Parasitology. 1986 Dec;93(Pt 3):531–537. doi: 10.1017/s0031182000081233. [DOI] [PubMed] [Google Scholar]
- Katiyar J. C., Gupta S., Sharma S. Experimental models in drug development for helminthic diseases. Rev Infect Dis. 1989 Jul-Aug;11(4):638–654. doi: 10.1093/clinids/11.4.638. [DOI] [PubMed] [Google Scholar]
- Lanusse C. E., Prichard R. K. Clinical pharmacokinetics and metabolism of benzimidazole anthelmintics in ruminants. Drug Metab Rev. 1993;25(3):235–279. doi: 10.3109/03602539308993977. [DOI] [PubMed] [Google Scholar]
- Maki J., Yanagisawa T. A comparison of the effects of flubendazole and thiabendazole on the larvae of Angiostrongylus cantonensis, Trichinella spiralis, Diphyllobothrium erinacei and Hymenolepis nana in mice. Parasitology. 1983 Dec;87(Pt 3):525–531. doi: 10.1017/s0031182000083049. [DOI] [PubMed] [Google Scholar]
- Martin R. J. Modes of action of anthelmintic drugs. Vet J. 1997 Jul;154(1):11–34. doi: 10.1016/s1090-0233(05)80005-x. [DOI] [PubMed] [Google Scholar]
- McKellar Q. A., Scott E. W. The benzimidazole anthelmintic agents--a review. J Vet Pharmacol Ther. 1990 Sep;13(3):223–247. doi: 10.1111/j.1365-2885.1990.tb00773.x. [DOI] [PubMed] [Google Scholar]
- Mojon M., Saura C., Roojee N., Tran Manh Sung R. An experimental model for therapeutic trials of anthelminthic drugs. J Antimicrob Chemother. 1987 Jan;19(1):73–77. doi: 10.1093/jac/19.1.73. [DOI] [PubMed] [Google Scholar]
- Nawa Y., Ishikawa N., Tsuchiya K., Horii Y., Abe T., Khan A. I., Bing-Shi, Itoh H., Ide H., Uchiyama F. Selective effector mechanisms for the expulsion of intestinal helminths. Parasite Immunol. 1994 Jul;16(7):333–338. doi: 10.1111/j.1365-3024.1994.tb00358.x. [DOI] [PubMed] [Google Scholar]
- Ochoa C., Rodríguez J., López García M. L., Ramón Martínez A., Mercedes Martínez M. Anthelmintic activity of 6,7-diaryl-pteridines. Arzneimittelforschung. 1996 Jun;46(6):643–648. [PubMed] [Google Scholar]
- Prichard R. Anthelmintic resistance. Vet Parasitol. 1994 Aug;54(1-3):259–268. doi: 10.1016/0304-4017(94)90094-9. [DOI] [PubMed] [Google Scholar]
- Waller P. J., Echevarria F., Eddi C., Maciel S., Nari A., Hansen J. W. The prevalence of anthelmintic resistance in nematode parasites of sheep in southern Latin America: general overview. Vet Parasitol. 1996 Apr;62(3-4):181–187. doi: 10.1016/0304-4017(95)00909-4. [DOI] [PubMed] [Google Scholar]
