Skip to main content
Canadian Journal of Veterinary Research logoLink to Canadian Journal of Veterinary Research
. 2000 Jul;64(3):164–170.

Development and validation of a method for simultaneous separation and quantification of 5 different sugars in canine urine.

J M Steiner 1, D A Williams 1, E M Moeller 1
PMCID: PMC1189608  PMID: 10935882

Abstract

The objective of this project was to develop and validate a method for concurrent separation and quantification of methylglucose, rhamnose, xylose, sucrose, and lactulose in canine urine by using high pressure anion exchange liquid chromatography and pulsed amperometric detection. The method was validated by evaluating dilutional parallelism, spiking recovery, intra-assay variability, and inter-assay variability. Observed to expected ratios for 3 urine samples, and all sugars, ranged from 77.6% to 106.9% for a 1:2 dilution, 85.2% to 121.4% for a 1:4 dilution, and 91.6% to 163.7% for a 1:8 dilution. Observed to expected ratios for spiking recovery of 3 urine samples, all sugars, and 5 different spiking solutions, ranged from 85.5% to 116.7 % (mean +/- SD, 100.5 +/- 6.0%). The intra-assay coefficients of variation were 1.6%, 3.4%, and 4.7% for methylglucose; 1.6%, 2.0%, and 3.6% for rhamnose; 2.7%, 1.4%, and 1.1% for xylose; 9.8%, 3.4%, and 4.0% for sucrose; and 3.2%, 3.3%, and 3.3% for lactulose. Inter-assay coefficients of variation were 3.2%, 5.7%, and 4.2% for methylglucose; 4.3%, 5.4%, and 6.4% for rhamnose; 3.3%, 5.0%, and 4.2% for xylose; 9.4%, 9.9%, and 9.4% for sucrose; and 6.1%, 4.9%, and 2.7% for lactulose. In conclusion, a method for simultaneous separation and quantification of 5 sugars in canine urine was established and found to be linear, accurate, precise, and reproducible. This method may prove useful in the simultaneous evaluation of gastric permeability, small intestinal permeability, and small intestinal mucosal function in dogs with gastrointestinal disorders.

Full text

PDF
164

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blomquist L., Bark T., Hedenborg G., Svenberg T., Norman A. Comparison between the lactulose/mannitol and 51Cr-ethylenediaminetetraacetic acid/14C-mannitol methods for intestinal permeability. Frequency distribution pattern and variability of markers and marker ratios in healthy subjects. Scand J Gastroenterol. 1993 Mar;28(3):274–280. doi: 10.3109/00365529309096085. [DOI] [PubMed] [Google Scholar]
  2. Cherbut C., Meirieu O., Ruckebusch Y. Effect of diet on intestinal xylose absorption in dogs. Dig Dis Sci. 1986 Apr;31(4):385–391. doi: 10.1007/BF01311674. [DOI] [PubMed] [Google Scholar]
  3. Deitch E. A. Intestinal permeability is increased in burn patients shortly after injury. Surgery. 1990 Apr;107(4):411–416. [PubMed] [Google Scholar]
  4. Fleming S. C., Kapembwa M. S., Laker M. F., Levin G. E., Griffin G. E. Rapid and simultaneous determination of lactulose and mannitol in urine, by HPLC with pulsed amperometric detection, for use in studies of intestinal permeability. Clin Chem. 1990 May;36(5):797–799. [PubMed] [Google Scholar]
  5. Hall E. J., Batt R. M., Brown A. Assessment of canine intestinal permeability, using 51Cr-labeled ethylenediaminetetraacetate. Am J Vet Res. 1989 Dec;50(12):2069–2074. [PubMed] [Google Scholar]
  6. Hall E. J., Batt R. M. Differential sugar absorption for the assessment of canine intestinal permeability: the cellobiose/mannitol test in gluten-sensitive enteropathy of Irish setters. Res Vet Sci. 1991 Jul;51(1):83–87. doi: 10.1016/0034-5288(91)90036-n. [DOI] [PubMed] [Google Scholar]
  7. Hall E. J. Clinical laboratory evaluation of small intestinal function. Vet Clin North Am Small Anim Pract. 1999 Mar;29(2):441-69, vi. [PubMed] [Google Scholar]
  8. Heyman M., Desjeux J. F., Grasset E., Dumontier A. M., Lestradet H. Relationship between transport of D-xylose and other monosaccharides in jejunal mucosa of children. Gastroenterology. 1981 Apr;80(4):758–762. [PubMed] [Google Scholar]
  9. Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn's disease. Scand J Gastroenterol. 1992 Sep;27(9):721–726. doi: 10.3109/00365529209011172. [DOI] [PubMed] [Google Scholar]
  10. Irving C. S., Lifschitz C. H., Marks L. M., Nichols B. L., Klein P. D. Polyethylene glycol polymers of low molecular weight as probes of intestinal permeability. I. Innovations in analysis and quantitation. J Lab Clin Med. 1986 Apr;107(4):290–298. [PubMed] [Google Scholar]
  11. Jenkins A. P., Menzies I. S., Nukajam W. S., Creamer B. The effect of ingested lactulose on absorption of L-rhamnose, D-xylose, and 3-O-methyl-D-glucose in subjects with ileostomies. Scand J Gastroenterol. 1994 Sep;29(9):820–825. doi: 10.3109/00365529409092517. [DOI] [PubMed] [Google Scholar]
  12. Kynaston J. A., Fleming S. C., Laker M. F., Pearson A. D. Simultaneous quantification of mannitol, 3-O-methyl glucose, and lactulose in urine by HPLC with pulsed electrochemical detection, for use in studies of intestinal permeability. Clin Chem. 1993 Mar;39(3):453–456. [PubMed] [Google Scholar]
  13. Marks S. L., Williams D. A. Time course of gastrointestinal tract permeability to chromium 51-labeled ethylenediaminetetraacetate in healthy dogs. Am J Vet Res. 1998 Sep;59(9):1113–1115. [PubMed] [Google Scholar]
  14. Maxton D. G., Bjarnason I., Reynolds A. P., Catt S. D., Peters T. J., Menzies I. S. Lactulose, 51Cr-labelled ethylenediaminetetra-acetate, L-rhamnose and polyethyleneglycol 400 [corrected] as probe markers for assessment in vivo of human intestinal permeability. Clin Sci (Lond) 1986 Jul;71(1):71–80. doi: 10.1042/cs0710071. [DOI] [PubMed] [Google Scholar]
  15. Meddings J. B., Gibbons I. Discrimination of site-specific alterations in gastrointestinal permeability in the rat. Gastroenterology. 1998 Jan;114(1):83–92. doi: 10.1016/s0016-5085(98)70636-5. [DOI] [PubMed] [Google Scholar]
  16. Meddings J. B., Kirk D., Olson M. E. Noninvasive detection of nonsteroidal anti-inflammatory drug-induced gastropathy in dogs. Am J Vet Res. 1995 Aug;56(8):977–981. [PubMed] [Google Scholar]
  17. Meddings J. B., Sutherland L. R., Byles N. I., Wallace J. L. Sucrose: a novel permeability marker for gastroduodenal disease. Gastroenterology. 1993 Jun;104(6):1619–1626. doi: 10.1016/0016-5085(93)90637-r. [DOI] [PubMed] [Google Scholar]
  18. Miki K., Butler R., Moore D., Davidson G. Rapid and simultaneous quantification of rhamnose, mannitol, and lactulose in urine by HPLC for estimating intestinal permeability in pediatric practice. Clin Chem. 1996 Jan;42(1):71–75. [PubMed] [Google Scholar]
  19. Morris T. H., Sorensen S. H., Turkington J., Batt R. M. Diarrhoea and increased intestinal permeability in laboratory beagles associated with proximal small intestinal bacterial overgrowth. Lab Anim. 1994 Oct;28(4):313–319. doi: 10.1258/002367794780745047. [DOI] [PubMed] [Google Scholar]
  20. Papasouliotis K., Gruffydd-Jones T. J., Sparkes A. H., Cripps P. J., Millard W. G. Lactulose and mannitol as probe markers for in vivo assessment of passive intestinal permeability in healthy cats. Am J Vet Res. 1993 Jun;54(6):840–844. [PubMed] [Google Scholar]
  21. Quigg J., Brydon G., Ferguson A., Simpson J. Evaluation of canine small intestinal permeability using the lactulose/rhamnose urinary excretion test. Res Vet Sci. 1993 Nov;55(3):326–332. doi: 10.1016/0034-5288(93)90102-l. [DOI] [PubMed] [Google Scholar]
  22. Sutherland L. R., Verhoef M., Wallace J. L., Van Rosendaal G., Crutcher R., Meddings J. B. A simple, non-invasive marker of gastric damage: sucrose permeability. Lancet. 1994 Apr 23;343(8904):998–1000. doi: 10.1016/s0140-6736(94)90125-2. [DOI] [PubMed] [Google Scholar]
  23. Sørensen S. H., Proud F. J., Adam A., Rutgers H. C., Batt R. M. A novel HPLC method for the simultaneous quantification of monosaccharides and disaccharides used in tests of intestinal function and permeability. Clin Chim Acta. 1993 Nov 30;221(1-2):115–125. doi: 10.1016/0009-8981(93)90026-z. [DOI] [PubMed] [Google Scholar]
  24. Travis S., Menzies I. Intestinal permeability: functional assessment and significance. Clin Sci (Lond) 1992 May;82(5):471–488. doi: 10.1042/cs0820471. [DOI] [PubMed] [Google Scholar]
  25. Willems D., Cadranel S., Jacobs W. Measurement of urinary sugars by HPLC in the estimation of intestinal permeability: evaluation in pediatric clinical practice. Clin Chem. 1993 May;39(5):888–890. [PubMed] [Google Scholar]
  26. Wood N. C., Hamilton I., Axon A. T., Khan S. A., Quirke P., Mindham R. H., McGuigan K., Prison H. M. Abnormal intestinal permeability. An aetiological factor in chronic psychiatric disorders? Br J Psychiatry. 1987 Jun;150:853–856. doi: 10.1192/bjp.150.6.853. [DOI] [PubMed] [Google Scholar]
  27. van Nieuwenhoven M. A., Geerling B. J., Deutz N. E., Brouns F., Brummer R. J. The sensitivity of the lactulose/rhamnose gut permeability test. Eur J Clin Invest. 1999 Feb;29(2):160–165. doi: 10.1046/j.1365-2362.1999.00421.x. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Veterinary Research are provided here courtesy of Canadian Veterinary Medical Association

RESOURCES