Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Apr;423:221–240. doi: 10.1113/jphysiol.1990.sp018019

Modulation of Ca2+ transients and contractile properties by beta-adrenoceptor stimulation in ferret ventricular muscles.

O Okazaki 1, N Suda 1, K Hongo 1, M Konishi 1, S Kurihara 1
PMCID: PMC1189754  PMID: 1696985

Abstract

1. The mechanism of modulation of Ca2+ transients and contraction by beta-adrenoceptor stimulation was studied in ferret ventricular muscles using aequorin to measure intracellular Ca2+. 2. Peaks of tension and light transients were increased by isoprenaline (10(-9) - 5 x 10(-7) M) which also abbreviated their time courses. 3. Time-to-peak tension was significantly shortened by 5 x 10(-9) M-isoprenaline and time-to-peak light was abbreviated by 10(-9) M-isoprenaline. 4. The time for the light to decay was shortened at 10(-9) M-isoprenaline. However, a higher concentration of isoprenaline (10(-8) M) was required for significant shortening of the half-relaxation time (TR50). 5. When isoprenaline was removed and beta-blocker (bupranolol, 1 microM) was applied, the time course of the light transients recovered but the time course of relaxation did not recover. 6. The relationship between [Ca2+]i and tension in tetanic contraction produced in the presence of ryanodine (5 microM) was shifted to the right by isoprenaline (10(-8) M). This was recovered by the replacement of isoprenaline with bupranolol (1 microM). 7. Isoprenaline (10(-7) M) added to the solution containing 20 mM [Ca2+]O and Bay K 8644 (1 microM), which produced maximal tension, caused a large light signal and enhancement of the initial phasic tension in tetanic contraction. However, the replacement of isoprenaline with bupranolol after immersing the preparation in 20 mM [Ca2+]O solution with Bay K 8644 and isoprenaline, did not significantly change the tension level, although the light signal decreased. Similar results were obtained in the ventricular muscle of young rats. 8. These results suggest that the dose dependence of modulation of the contractile element and sarcoplasmic reticulum (SR) by beta-adrenoceptor stimulation differs, and that additional factors, other than the faster Ca2+ uptake by SR and the decrease in Ca2+ sensitivity of the contractile element, might be involved in the shortening of the half-relaxation time by beta-adrenoceptor stimulation. In addition, beta-adrenoceptor stimulation does not produce a marked change in the maximal tension level.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978 Jun 15;273(5663):509–513. doi: 10.1038/273509a0. [DOI] [PubMed] [Google Scholar]
  2. Allen D. G., Blinks J. R., Prendergast F. G. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. Science. 1977 Mar 11;195(4282):996–998. doi: 10.1126/science.841325. [DOI] [PubMed] [Google Scholar]
  3. Allen D. G., Kurihara S. Calcium transients in mammalian ventricular muscle. Eur Heart J. 1980;Suppl A:5–15. doi: 10.1093/eurheartj/1.suppl_1.5. [DOI] [PubMed] [Google Scholar]
  4. Allen D. G., Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982 Jun;327:79–94. doi: 10.1113/jphysiol.1982.sp014221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  6. Endoh M., Blinks J. R. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res. 1988 Feb;62(2):247–265. doi: 10.1161/01.res.62.2.247. [DOI] [PubMed] [Google Scholar]
  7. Hartzell H. C. Phosphorylation of C-protein in intact amphibian cardiac muscle. Correlation between 32P incorporation and twitch relaxation. J Gen Physiol. 1984 Apr;83(4):563–588. doi: 10.1085/jgp.83.4.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herzig J. W., Köhler G., Pfitzer G., Rüegg J. C., Wölffle G. Cyclic AMP inhibits contractility of detergent treated glycerol extracted cardiac muscle. Pflugers Arch. 1981 Sep;391(3):208–212. doi: 10.1007/BF00596172. [DOI] [PubMed] [Google Scholar]
  9. Hoh J. F., Rossmanith G. H., Kwan L. J., Hamilton A. M. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res. 1988 Mar;62(3):452–461. doi: 10.1161/01.res.62.3.452. [DOI] [PubMed] [Google Scholar]
  10. Kranias E. G., Garvey J. L., Srivastava R. D., Solaro R. J. Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline. Biochem J. 1985 Feb 15;226(1):113–121. doi: 10.1042/bj2260113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kurihara S., Allen D. G. Intracellular Ca++ transients and relaxation in mammalian cardiac muscle. Jpn Circ J. 1982 Jan;46(1):39–43. doi: 10.1253/jcj.46.39. [DOI] [PubMed] [Google Scholar]
  12. Kurihara S., Konishi M. Effects of beta-adrenoceptor stimulation on intracellular Ca transients and tension in rat ventricular muscle. Pflugers Arch. 1987 Aug;409(4-5):427–437. doi: 10.1007/BF00583798. [DOI] [PubMed] [Google Scholar]
  13. MURAD F., CHI Y. M., RALL T. W., SUTHERLAND E. W. Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. J Biol Chem. 1962 Apr;237:1233–1238. [PubMed] [Google Scholar]
  14. Marban E., Kusuoka H. Maximal Ca2+-activated force and myofilament Ca2+ sensitivity in intact mammalian hearts. Differential effects of inorganic phosphate and hydrogen ions. J Gen Physiol. 1987 Nov;90(5):609–623. doi: 10.1085/jgp.90.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marban E., Kusuoka H., Yue D. T., Weisfeldt M. L., Wier W. G. Maximal Ca2+-activated force elicited by tetanization of ferret papillary muscle and whole heart: mechanism and characteristics of steady contractile activation in intact myocardium. Circ Res. 1986 Sep;59(3):262–269. doi: 10.1161/01.res.59.3.262. [DOI] [PubMed] [Google Scholar]
  16. Marban E., Rink T. J., Tsien R. W., Tsien R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature. 1980 Aug 28;286(5776):845–850. doi: 10.1038/286845a0. [DOI] [PubMed] [Google Scholar]
  17. McClellan G. B., Winegrad S. The regulation of the calcium sensitivity of the contractile system in mammalian cardiac muscle. J Gen Physiol. 1978 Dec;72(6):737–764. doi: 10.1085/jgp.72.6.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McIvor M. E., Orchard C. H., Lakatta E. G. Dissociation of changes in apparent myofibrillar Ca2+ sensitivity and twitch relaxation induced by adrenergic and cholinergic stimulation in isolated ferret cardiac muscle. J Gen Physiol. 1988 Oct;92(4):509–529. doi: 10.1085/jgp.92.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mope L., McClellan G. B., Winegrad S. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol. 1980 Mar;75(3):271–282. doi: 10.1085/jgp.75.3.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morgan J. P., Blinks J. R. Intracellular Ca2+ transients in the cat papillary muscle. Can J Physiol Pharmacol. 1982 Apr;60(4):524–528. doi: 10.1139/y82-072. [DOI] [PubMed] [Google Scholar]
  21. Ray K. P., England P. J. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. FEBS Lett. 1976 Nov;70(1):11–16. doi: 10.1016/0014-5793(76)80716-8. [DOI] [PubMed] [Google Scholar]
  22. Reuter H., Cachelin A. B., De Peyer J. E., Kokubun S. Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):193–200. doi: 10.1101/sqb.1983.048.01.022. [DOI] [PubMed] [Google Scholar]
  23. Robertson S. P., Johnson J. D., Holroyde M. J., Kranias E. G., Potter J. D., Solaro R. J. The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem. 1982 Jan 10;257(1):260–263. [PubMed] [Google Scholar]
  24. SONNENBLICK E. H. Implications of muscle mechanics in the heart. Fed Proc. 1962 Nov-Dec;21:975–990. [PubMed] [Google Scholar]
  25. Schümann H. J., Endoh S., Brodde O. E. The time course of the effects of beta- and alpha-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol. 1975;289(3):291–302. doi: 10.1007/BF00499982. [DOI] [PubMed] [Google Scholar]
  26. Solaro R. J., Moir A. J., Perry S. V. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature. 1976 Aug 12;262(5569):615–617. doi: 10.1038/262615a0. [DOI] [PubMed] [Google Scholar]
  27. Tada M., Katz A. M. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol. 1982;44:401–423. doi: 10.1146/annurev.ph.44.030182.002153. [DOI] [PubMed] [Google Scholar]
  28. Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
  29. Tsien R. W. Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res. 1977;8:363–420. [PubMed] [Google Scholar]
  30. Wier W. G., Kort A. A., Stern M. D., Lakatta E. G., Marban E. Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7367–7371. doi: 10.1073/pnas.80.23.7367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Winegrad S. Regulation of cardiac contractile proteins. Correlations between physiology and biochemistry. Circ Res. 1984 Nov;55(5):565–574. doi: 10.1161/01.res.55.5.565. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto K., Ohtsuki I. Effect of phosphorylation of porcine cardiac troponin I by 3':5'-cyclic AMP-dependent protein kinase on the actomyosin ATPase activity. J Biochem. 1982 May;91(5):1669–1677. doi: 10.1093/oxfordjournals.jbchem.a133858. [DOI] [PubMed] [Google Scholar]
  33. Yue D. T., Marban E., Wier W. G. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol. 1986 Feb;87(2):223–242. doi: 10.1085/jgp.87.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES