Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Apr;423:579–592. doi: 10.1113/jphysiol.1990.sp018041

Acetylcholine release at identified nerve terminals in the organ-cultured frog neuromuscular preparation.

R Cherki-Vakil 1, H Meiri 1
PMCID: PMC1189776  PMID: 2167368

Abstract

1. The frog cutaneous pectoris neuromuscular preparation was maintained in organ culture for a few days, at either 24 or 14 degrees C. The synaptic activity of identified nerve terminals was repeatedly examined in order to describe the sequence and time course of changes from normal synaptic activity to a complete synaptic silence. 2. We found that the 'transient stage' (stage II, according to Ko, 1981) consists of at least three distinct periods each characterized by a unique trend of change in synaptic activity. The initial change involved a simultaneous decay of both spontaneous and nerve stimulation-evoked release of acetylcholine (sub-stage II1). Subsequently, the frequency of spontaneous miniature endplate potentials (MEPPs) increased gradually, while the evoked release continued its monotonous decay (sub-stage II2). During the third sub-stage spontaneous MEPPs, but no evoked endplate potentials (EPPs), were observed (sub-stage II3). 3. Statistical properties of acetylcholine release in still-transmitting junctions at sub-stage II2 and in non-transmitting junctions at sub-stage II3 were investigated. MEPPs with skewed amplitude histograms and bursting behaviour were evident at both sub-stages. However, the incidence and the extent of these distortions were higher in the non-transmitting junctions. 4. An inverse relation between the quantal content of evoked release and the rate of spontaneous secretion was found in the transmitting junctions. 5. These results suggest that some of the deterioration of synaptic activity in organ culture is caused by an impairment of the release process itself. Possible cellular mechanisms are discussed.

Full text

PDF
579

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnaes E., Rahamimoff R. On the role of mitochondria in transmitter release from motor nerve terminals. J Physiol. 1975 Jun;248(2):285–306. doi: 10.1113/jphysiol.1975.sp010974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ceccarelli B., Grohovaz F., Hurlbut W. P. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. J Cell Biol. 1979 Apr;81(1):163–177. doi: 10.1083/jcb.81.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couteaux R., Pécot-Dechavassine M. Vésicules synaptiques et poches au niveau des "zones actives" de la jonction neuromusculaire. C R Acad Sci Hebd Seances Acad Sci D. 1970 Dec 21;271(25):2346–2349. [PubMed] [Google Scholar]
  5. Cull-Candy S. G., Miledi R., Trautmann A., Uchitel O. D. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J Physiol. 1980 Feb;299:621–638. doi: 10.1113/jphysiol.1980.sp013145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cull-Candy S. G., Miledi R., Uchitel O. D. Denervation changes in normal and myasthenia gravis human muscle fibres during organ culture. J Physiol. 1982 Dec;333:227–249. doi: 10.1113/jphysiol.1982.sp014451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuoka T., Engel A. G., Lang B., Newsom-Davis J., Prior C., Wray D. W. Lambert-Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann Neurol. 1987 Aug;22(2):193–199. doi: 10.1002/ana.410220203. [DOI] [PubMed] [Google Scholar]
  9. Glavinović M. I., Lee S., Miledi R. Reappearance of miniature endplate potentials in frog neuromuscular junctions "silenced" by lanthanum ions. Neuroscience. 1989;31(1):181–186. doi: 10.1016/0306-4522(89)90039-0. [DOI] [PubMed] [Google Scholar]
  10. Grinnell A. D., Herrera A. A. Physiological regulation of synaptic effectiveness at frog neuromuscular junctions. J Physiol. 1980 Oct;307:301–317. doi: 10.1113/jphysiol.1980.sp013436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris A. J., Miledi R. A study of frog muscle maintained in organ culture. J Physiol. 1972 Feb;221(1):207–226. doi: 10.1113/jphysiol.1972.sp009749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris J. B., Ribchester R. R. The relationship between end-plate size and transmitter release in normal and dystrophic muscles of the mouse. J Physiol. 1979 Nov;296:245–265. doi: 10.1113/jphysiol.1979.sp013003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
  15. Kim Y. I., Neher E. IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science. 1988 Jan 22;239(4838):405–408. doi: 10.1126/science.2447652. [DOI] [PubMed] [Google Scholar]
  16. Kim Y. I. Passively transferred Lambert-Eaton syndrome in mice receiving purified IgG. Muscle Nerve. 1986 Jul-Aug;9(6):523–530. doi: 10.1002/mus.880090608. [DOI] [PubMed] [Google Scholar]
  17. Ko C. P. Electrophysiological and freeze-fracture studies of changes following denervation at frog neuromuscular junctions. J Physiol. 1981 Dec;321:627–639. doi: 10.1113/jphysiol.1981.sp014007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ko C. P. Formation of the active zone at developing neuromuscular junctions in larval and adult bullfrogs. J Neurocytol. 1985 Jun;14(3):487–512. doi: 10.1007/BF01217757. [DOI] [PubMed] [Google Scholar]
  19. Ko C. P. Regeneration of the active zone at the frog neuromuscular junction. J Cell Biol. 1984 May;98(5):1685–1695. doi: 10.1083/jcb.98.5.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuno M., Turkanis S. A., Weakly J. N. Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog. J Physiol. 1971 Mar;213(3):545–556. doi: 10.1113/jphysiol.1971.sp009399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lambert E. H., Elmqvist D. Quantal components of end-plate potentials in the myasthenic syndrome. Ann N Y Acad Sci. 1971 Sep 15;183:183–199. doi: 10.1111/j.1749-6632.1971.tb30750.x. [DOI] [PubMed] [Google Scholar]
  22. Lang B., Newsom-Davis J., Prior C., Wray D. Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol. 1983 Nov;344:335–345. doi: 10.1113/jphysiol.1983.sp014943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Langley J. N. On degenerative changes in the nerve endings in striated muscle, in the nerve plexus on arteries, and in the nerve fibres of the frog. J Physiol. 1909 Jul 2;38(6):504–512. doi: 10.1113/jphysiol.1909.sp001317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meiri H., Rahamimoff R. Clumping and oscillations in evoked transmitter release at the frog neuromuscular junction. J Physiol. 1978 May;278:513–523. doi: 10.1113/jphysiol.1978.sp012321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miledi R., Slater C. R. Electrophysiology and electron-microscopy of rat neuromuscular junctions after nerve degeneration. Proc R Soc Lond B Biol Sci. 1968 Feb 27;169(1016):289–306. doi: 10.1098/rspb.1968.0012. [DOI] [PubMed] [Google Scholar]
  26. Miledi R., Slater C. R. On the degeneration of rat neuromuscular junctions after nerve section. J Physiol. 1970 Apr;207(2):507–528. doi: 10.1113/jphysiol.1970.sp009076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagel A., Engel A. G., Lang B., Newsom-Davis J., Fukuoka T. Lambert-Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann Neurol. 1988 Oct;24(4):552–558. doi: 10.1002/ana.410240412. [DOI] [PubMed] [Google Scholar]
  28. Nystrom R. R., Ko C. P. Disruption of active zones in frog neuromuscular junctions following treatment with proteolytic enzymes. J Neurocytol. 1988 Feb;17(1):63–71. doi: 10.1007/BF01735378. [DOI] [PubMed] [Google Scholar]
  29. Propst J. W., Ko C. P. Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J Neurosci. 1987 Nov;7(11):3654–3664. doi: 10.1523/JNEUROSCI.07-11-03654.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rahamimoff R., Meiri H., Erulkar S. D., Barenholz Y. Changes in transmitter release induced by ion-containing liposomes. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5214–5216. doi: 10.1073/pnas.75.10.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thesleff S., Molgó J. A new type of transmitter release at the neuromuscular junction. Neuroscience. 1983 May;9(1):1–8. doi: 10.1016/0306-4522(83)90041-6. [DOI] [PubMed] [Google Scholar]
  32. Winlow W., Usherwood P. N. Electrophysiological studies of normal and degenerating mouse neuromuscular junctions. Brain Res. 1976 Jul 16;110(3):447–461. doi: 10.1016/0006-8993(76)90857-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES