Abstract
1. Neurones in the postero-medial part of the cat's lateral suprasylvian visual cortex (area PMLS) show an overall preference for centrifugal motion, suggesting that the PMLS may be specialized in the analysis of expanding optic flow fields associated with forward locomotion. 2. We examined whether the visual experience young kittens normally receive during forward locomotion guides the development of the centrifugal preference in the PMLS. 3. Seven kittens were reared in the dark and exposed to either expanding or contracting flow fields for at least 100 h during their 4th-11th weeks of life. Specific experience was achieved by exposing kittens either to flow field patterns generated on a screen or by actually moving them forward or backward in a carousel. 4. Our results show that although the development of directional selectivity in the PMLS requires visual experience, the centrifugal bias is independent of specific visual exposure. The preference for centrifugal motion among PMLS cells was just as evident in kittens exposed to contracting as in kittens exposed to expanding flow fields. 5. We conclude that the preference for centrifugal motion in the PMLS is not the result of anisotropic stimulation kittens receive during locomotion in early ontogeny, but is probably innately determined as a phylogenetic adaptation.
Full text
PDF



















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright T. D. Centrifugal directional bias in the middle temporal visual area (MT) of the macaque. Vis Neurosci. 1989;2(2):177–188. doi: 10.1017/s0952523800012037. [DOI] [PubMed] [Google Scholar]
- Ball K., Sekuler R. Human vision favors centrifugal motion. Perception. 1980;9(3):317–325. doi: 10.1068/p090317. [DOI] [PubMed] [Google Scholar]
- Benhamida C. Quantitative analysis of synaptogenesis in the cerebral cortex of the cat suprasylvian gyrus. Brain Res Bull. 1987 Nov;19(5):567–579. doi: 10.1016/0361-9230(87)90074-8. [DOI] [PubMed] [Google Scholar]
- Blakemore C., Cooper G. F. Development of the brain depends on the visual environment. Nature. 1970 Oct 31;228(5270):477–478. doi: 10.1038/228477a0. [DOI] [PubMed] [Google Scholar]
- Blakemore C., Zumbroich T. J. Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. J Physiol. 1987 Aug;389:569–603. doi: 10.1113/jphysiol.1987.sp016673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buisseret P., Gary-Bobo E., Milleret C. Development of the kitten visual cortex depends on the relationship between the plane of eye movements and visual inputs. Exp Brain Res. 1988;72(1):83–94. doi: 10.1007/BF00248503. [DOI] [PubMed] [Google Scholar]
- Chalupa L. M., Abramson B. P. Receptive-field properties in the tecto- and striate-recipient zones of the cat's lateral posterior nucleus. Prog Brain Res. 1988;75:85–94. doi: 10.1016/s0079-6123(08)60468-9. [DOI] [PubMed] [Google Scholar]
- Clocksin W. F. Perception of surface slant and edge labels from optical flow: a computational approach. Perception. 1980;9(3):253–269. doi: 10.1068/p090253. [DOI] [PubMed] [Google Scholar]
- Cynader M., Berman N., Hein A. Cats raised in a one-directional world: effects on receptive fields in visual cortex and superior colliculus. Exp Brain Res. 1975 Mar 27;22(3):267–280. doi: 10.1007/BF00234769. [DOI] [PubMed] [Google Scholar]
- Cynader M., Berman N., Hein A. Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex. Proc Natl Acad Sci U S A. 1973 May;70(5):1353–1354. doi: 10.1073/pnas.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daw N. W., Wyatt H. J. Kittens reared in a unidirectional environment: evidence for a critical period. J Physiol. 1976 May;257(1):155–170. doi: 10.1113/jphysiol.1976.sp011361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frégnac Y., Imbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev. 1984 Jan;64(1):325–434. doi: 10.1152/physrev.1984.64.1.325. [DOI] [PubMed] [Google Scholar]
- GIBSON J. J. Visually controlled locomotion and visual orientation in animals. Br J Psychol. 1958 Aug;49(3):182–194. doi: 10.1111/j.2044-8295.1958.tb00656.x. [DOI] [PubMed] [Google Scholar]
- Georgeson M. A., Harris M. G. Apparent foveofugal drift of counterphase gratings. Perception. 1978;7(5):527–536. doi: 10.1068/p070527. [DOI] [PubMed] [Google Scholar]
- HELD R., HEIN A. MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT OF VISUALLY GUIDED BEHAVIOR. J Comp Physiol Psychol. 1963 Oct;56:872–876. doi: 10.1037/h0040546. [DOI] [PubMed] [Google Scholar]
- Hirsch H. V., Spinelli D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science. 1970 May 15;168(3933):869–871. doi: 10.1126/science.168.3933.869. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
- Jones K. R., Spear P. D., Tong L. Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex. J Neurosci. 1984 Oct;4(10):2543–2552. doi: 10.1523/JNEUROSCI.04-10-02543.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCall M. A., Tong L., Spear P. D. Development of neuronal responses in cat posteromedial lateral suprasylvian visual cortex. Brain Res. 1988 Apr 26;447(1):67–78. doi: 10.1016/0006-8993(88)90966-3. [DOI] [PubMed] [Google Scholar]
- Ohmi M., Howard I. P. Effect of stationary objects on illusory forward self-motion induced by a looming display. Perception. 1988;17(1):5–11. doi: 10.1068/p170005. [DOI] [PubMed] [Google Scholar]
- Palmer L. A., Rosenquist A. C., Tusa R. J. The retinotopic organization of lateral suprasylvian visual areas in the cat. J Comp Neurol. 1978 Jan 15;177(2):237–256. doi: 10.1002/cne.901770205. [DOI] [PubMed] [Google Scholar]
- Pettigrew J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J Physiol. 1974 Feb;237(1):49–74. doi: 10.1113/jphysiol.1974.sp010469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price D. J., Zumbroich T. J., Blakemore C. Development of stimulus selectivity and functional organization in the suprasylvian visual cortex of the cat. Proc R Soc Lond B Biol Sci. 1988 Mar 22;233(1271):123–163. doi: 10.1098/rspb.1988.0015. [DOI] [PubMed] [Google Scholar]
- Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
- Rauschecker J. P., Schrader W. Effects of monocular strobe rearing on kitten striate cortex. Exp Brain Res. 1987;68(3):525–532. doi: 10.1007/BF00249796. [DOI] [PubMed] [Google Scholar]
- Rauschecker J. P., Singer W. The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. J Physiol. 1981 Jan;310:215–239. doi: 10.1113/jphysiol.1981.sp013545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauschecker J. P. Visual function of the cat's LP/LS subsystem in global motion processing. Prog Brain Res. 1988;75:95–108. doi: 10.1016/s0079-6123(08)60469-0. [DOI] [PubMed] [Google Scholar]
- Rauschecker J. P., von Grünau M. W., Poulin C. Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing. J Neurosci. 1987 Apr;7(4):943–958. doi: 10.1523/JNEUROSCI.07-04-00943.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauschecker J. P., von Grünau M. W., Poulin C. Thalamo-cortical connections and their correlation with receptive field properties in the cat's lateral suprasylvian visual cortex. Exp Brain Res. 1987;67(1):100–112. doi: 10.1007/BF00269458. [DOI] [PubMed] [Google Scholar]
- Regan D., Beverley K. I. How do we avoid confounding the direction we are looking and the direction we are moving? Science. 1982 Jan 8;215(4529):194–196. doi: 10.1126/science.7053572. [DOI] [PubMed] [Google Scholar]
- Regan D. Visual processing of four kinds of relative motion. Vision Res. 1986;26(1):127–145. doi: 10.1016/0042-6989(86)90076-3. [DOI] [PubMed] [Google Scholar]
- Rieger J. H., Lawton D. T. Processing differential image motion. J Opt Soc Am A. 1985 Feb;2(2):354–360. doi: 10.1364/josaa.2.000354. [DOI] [PubMed] [Google Scholar]
- Sherman S. M., Spear P. D. Organization of visual pathways in normal and visually deprived cats. Physiol Rev. 1982 Apr;62(2):738–855. doi: 10.1152/physrev.1982.62.2.738. [DOI] [PubMed] [Google Scholar]
- Spear P. D., Baumann T. P. Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. J Neurophysiol. 1975 Nov;38(6):1403–1420. doi: 10.1152/jn.1975.38.6.1403. [DOI] [PubMed] [Google Scholar]
- Spear P. D., Tong L., McCall M. A. Functional influence of areas 17, 18, and 19 on lateral suprasylvian cortex in kittens and adult cats: implications for compensation following early visual cortex damage. Brain Res. 1988 Apr 26;447(1):79–91. doi: 10.1016/0006-8993(88)90967-5. [DOI] [PubMed] [Google Scholar]
- Spear P. D., Tong L., McCall M. A., Pasternak T. Developmentally induced loss of direction-selective neurons in the cat's lateral suprasylvian visual cortex. Brain Res. 1985 Jun;352(2):281–285. doi: 10.1016/0165-3806(85)90115-4. [DOI] [PubMed] [Google Scholar]
- Spear P. D., Tong L., Sawyer C. Effects of binocular deprivation on responses of cells in cat's lateral suprasylvian visual cortex. J Neurophysiol. 1983 Feb;49(2):366–382. doi: 10.1152/jn.1983.49.2.366. [DOI] [PubMed] [Google Scholar]
- Stein B. E. Superior colliculus-mediated visual behaviors in cat and the concept of two corticotectal systems. Prog Brain Res. 1988;75:37–53. doi: 10.1016/s0079-6123(08)60464-1. [DOI] [PubMed] [Google Scholar]
- Stryker M. P., Sherk H., Leventhal A. G., Hirsch H. V. Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. J Neurophysiol. 1978 Jul;41(4):896–909. doi: 10.1152/jn.1978.41.4.896. [DOI] [PubMed] [Google Scholar]
- Toyama K., Komatsu Y., Kasai H., Fujii K., Umetani K. Responsiveness of Clare-Bishop neurons to visual cues associated with motion of a visual stimulus in three-dimensional space. Vision Res. 1985;25(3):407–414. doi: 10.1016/0042-6989(85)90066-5. [DOI] [PubMed] [Google Scholar]
- Tretter F., Cynader M., Singer W. Modification of direction selectivity of neurons in the visual cortex of kittens. Brain Res. 1975 Jan 24;84(1):143–149. doi: 10.1016/0006-8993(75)90808-2. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N. Postnatal development of the visual cortex and the influence of environment. Nature. 1982 Oct 14;299(5884):583–591. doi: 10.1038/299583a0. [DOI] [PubMed] [Google Scholar]
- Zumbroich T. J., Blakemore C., Price D. J. Stimulus selectivity and its postnatal development in the cat's suprasylvian visual cortex. Prog Brain Res. 1988;75:211–230. doi: 10.1016/s0079-6123(08)60480-x. [DOI] [PubMed] [Google Scholar]
- von Grünau M., Frost B. J. Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Exp Brain Res. 1983;49(1):84–92. doi: 10.1007/BF00235544. [DOI] [PubMed] [Google Scholar]



