Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 May;424:283–300. doi: 10.1113/jphysiol.1990.sp018067

Active ion transport pathways in the bovine retinal pigment epithelium.

S S Miller 1, J L Edelman 1
PMCID: PMC1189813  PMID: 1697344

Abstract

1. Radioactive tracer flux measurements demonstrate that active ion transport across the isolated bovine retinal pigment epithelium (RPE)-choroid preparation can be maintained for hours after the eye is enucleated and the tissue removed from the eye. 2. It has been shown that 86Rb tracer fluxes can be used to monitor potassium (K+) transport across bull-frog RPE. In bovine RPE, net 86Rb (K+) absorption is zero. Apical barium (Ba2+) elevated active K+ absorption from zero to approximately 0.3 mu equiv cm-2 h-1. This Ba2(+)-induced increase in active K+ absorption was inhibited either by ouabain or bumetanide in the apical bath. 3. In control Ringer solution, buffered with bicarbonate and CO2, the RPE-choroid actively absorbs chloride (Cl-) at a rate of approximately 0.5 mu equiv cm-2 h-1. In contrast, sodium (Na+) is secreted at a rate of approximately 0.5 mu equiv cm-2 h-1. Chloride absorption was inhibited by apical bumetanide, and Na+ secretion was inhibited by apical ouabain. These drugs were only effective when placed in the solution bathing the apical or retinal side of the tissue. 4. Net Cl- absorption requires an exit mechanism at the basolateral membrane. DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid) in the basal bath completely inhibited net Cl- absorption in bicarbonate-free Ringer solution. 5. These experiments show that the chloride transport pathway contains at least two components: (1) a bumetanide-sensitive uptake mechanism at the apical membrane; and (2) an efflux mechanism at the basolateral membrane that is blocked by DIDS. 6. Three apical membrane mechanisms were identified that could help modulate [K+]o in the subretinal or extracellular space that separates the distal retina and the RPE apical membrane. They are: (1) an ouabain-sensitive Na(+)-K+ pump; (2) a bumetanide-sensitive mechanism, the putative Na(+)-K(+)-Cl- co-transporter; (3) a barium-sensitive K+ channel that recycles, to the apical bath, most or all of the potassium that is actively taken up by the Na(+)-K+ pump and the co-transporter. 7. These data suggest that light-induced alterations in subretinal potassium that occur in vivo can activate the chloride transport pathway and help modulate RPE intracellular Cl- during transitions between the light and dark.

Full text

PDF
283

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Evans M. G., Marty A., Tan Y. P., Trautmann A. Blockage of Ca-activated Cl conductance by furosemide in rat lacrimal glands. Pflugers Arch. 1986 Jan;406(1):65–68. doi: 10.1007/BF00582955. [DOI] [PubMed] [Google Scholar]
  2. Frambach D. A., Misfeldt D. S. Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium. Am J Physiol. 1983 Jun;244(6):F679–F685. doi: 10.1152/ajprenal.1983.244.6.F679. [DOI] [PubMed] [Google Scholar]
  3. Frambach D. A., Valentine J. L., Weiter J. J. Initial observations of rabbit retinal pigment epithelium-choroid-sclera preparations. Invest Ophthalmol Vis Sci. 1988 May;29(5):814–817. [PubMed] [Google Scholar]
  4. Geck P., Heinz E. The Na-K-2Cl cotransport system. J Membr Biol. 1986;91(2):97–105. doi: 10.1007/BF01925787. [DOI] [PubMed] [Google Scholar]
  5. Griff E. R., Steinberg R. H. Origin of the light peak: in vitro study of Gekko gekko. J Physiol. 1982 Oct;331:637–652. doi: 10.1113/jphysiol.1982.sp014395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hughes B. A., Adorante J. S., Miller S. S., Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol. 1989 Jul;94(1):125–150. doi: 10.1085/jgp.94.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hughes B. A., Miller S. S., Farber D. B. Adenylate cyclase stimulation alters transport in frog retinal pigment epithelium. Am J Physiol. 1987 Apr;252(4 Pt 1):C385–C395. doi: 10.1152/ajpcell.1987.252.4.C385. [DOI] [PubMed] [Google Scholar]
  8. Hughes B. A., Miller S. S., Joseph D. P., Edelman J. L. cAMP stimulates the Na+-K+ pump in frog retinal pigment epithelium. Am J Physiol. 1988 Jan;254(1 Pt 1):C84–C98. doi: 10.1152/ajpcell.1988.254.1.C84. [DOI] [PubMed] [Google Scholar]
  9. Hughes B. A., Miller S. S., Machen T. E. Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state. J Gen Physiol. 1984 Jun;83(6):875–899. doi: 10.1085/jgp.83.6.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Immel J., Steinberg R. H. Spatial buffering of K+ by the retinal pigment epithelium in frog. J Neurosci. 1986 Nov;6(11):3197–3204. doi: 10.1523/JNEUROSCI.06-11-03197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knickelbein R., Aronson P. S., Schron C. M., Seifter J., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am J Physiol. 1985 Aug;249(2 Pt 1):G236–G245. doi: 10.1152/ajpgi.1985.249.2.G236. [DOI] [PubMed] [Google Scholar]
  12. Lasansky A., De Fisch F. W. Potential, current, and ionic fluxes across the isolated retinal pigment epithelium and choriod. J Gen Physiol. 1966 May;49(5):913–924. doi: 10.1085/jgp.49.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Linsenmeier R. A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol. 1986 Oct;88(4):521–542. doi: 10.1085/jgp.88.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linsenmeier R. A., Steinberg R. H. Origin and sensitivity of the light peak in the intact cat eye. J Physiol. 1982 Oct;331:653–673. doi: 10.1113/jphysiol.1982.sp014396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller S. S., Steinberg R. H. Active transport of ions across frog retinal pigment epithelium. Exp Eye Res. 1977 Sep;25(3):235–248. doi: 10.1016/0014-4835(77)90090-2. [DOI] [PubMed] [Google Scholar]
  16. Miller S. S., Steinberg R. H., Oakley B., 2nd The electrogenic sodium pump of the frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):259–279. doi: 10.1007/BF01944224. [DOI] [PubMed] [Google Scholar]
  17. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  18. Miller S. S., Steinberg R. H. Potassium modulation of taurine transport across the frog retinal pigment epithelium. J Gen Physiol. 1979 Aug;74(2):237–259. doi: 10.1085/jgp.74.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller S. S., Steinberg R. H. Potassium transport across the frog retinal pigment epithelium. J Membr Biol. 1982;67(3):199–209. doi: 10.1007/BF01868661. [DOI] [PubMed] [Google Scholar]
  20. Miller S., Farber D. Cyclic AMP modulation of ion transport across frog retinal pigment epithelium. Measurements in the short-circuit state. J Gen Physiol. 1984 Jun;83(6):853–874. doi: 10.1085/jgp.83.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Montrose M., Randles J., Kimmich G. A. SITS-sensitive Cl- conductance pathway in chick intestinal cells. Am J Physiol. 1987 Nov;253(5 Pt 1):C693–C699. doi: 10.1152/ajpcell.1987.253.5.C693. [DOI] [PubMed] [Google Scholar]
  22. Newman E. A. Membrane physiology of retinal glial (Müller) cells. J Neurosci. 1985 Aug;5(8):2225–2239. doi: 10.1523/JNEUROSCI.05-08-02225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Grady S. M., Palfrey H. C., Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol. 1987 Aug;253(2 Pt 1):C177–C192. doi: 10.1152/ajpcell.1987.253.2.C177. [DOI] [PubMed] [Google Scholar]
  24. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  25. Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oakley B., 2nd, Steinberg R. H., Miller S. S., Nilsson S. E. The in vitro frog pigment epithelial cell hyperpolarization in response to light. Invest Ophthalmol Vis Sci. 1977 Aug;16(8):771–774. [PubMed] [Google Scholar]
  27. Ostwald T. J., Steinberg R. H. Localization of frog retinal pigment epithelium Na+-K+ ATPase. Exp Eye Res. 1980 Sep;31(3):351–360. doi: 10.1016/s0014-4835(80)80043-1. [DOI] [PubMed] [Google Scholar]
  28. Pautler E. L., Tengerdy C. Transport of acidic amino acids by the bovine pigment epithelium. Exp Eye Res. 1986 Aug;43(2):207–214. doi: 10.1016/s0014-4835(86)80088-4. [DOI] [PubMed] [Google Scholar]
  29. Pirani D., Evans L. A., Cook D. I., Young J. A. Intracellular pH in the rat mandibular salivary gland: the role of Na-H and Cl-HCO3 antiports in secretion. Pflugers Arch. 1987 Feb;408(2):178–184. doi: 10.1007/BF00581349. [DOI] [PubMed] [Google Scholar]
  30. Russell J. M. Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process. J Gen Physiol. 1983 Jun;81(6):909–925. doi: 10.1085/jgp.81.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shimazaki H., Oakley B., 2nd Reaccumulation of [K+]o in the toad retina during maintained illumination. J Gen Physiol. 1984 Sep;84(3):475–504. doi: 10.1085/jgp.84.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinberg R. H., Miller S. S., Stern W. H. Initial observations on the isolated retinal pigment epithelium-choroid of the cat. Invest Ophthalmol Vis Sci. 1978 Jul;17(7):675–678. [PubMed] [Google Scholar]
  33. Tsuboi S. Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1987 Nov;28(11):1776–1782. [PubMed] [Google Scholar]
  34. Weleber R. G. Fast and slow oscillations of the electro-oculogram in Best's macular dystrophy and retinitis pigmentosa. Arch Ophthalmol. 1989 Apr;107(4):530–537. doi: 10.1001/archopht.1989.01070010544028. [DOI] [PubMed] [Google Scholar]
  35. Widdicombe J. H., Nathanson I. T., Highland E. Effects of "loop" diuretics on ion transport by dog tracheal epithelium. Am J Physiol. 1983 Nov;245(5 Pt 1):C388–C396. doi: 10.1152/ajpcell.1983.245.5.C388. [DOI] [PubMed] [Google Scholar]
  36. Winkler B. S., Giblin F. J. Glutathione oxidation in retina: effects on biochemical and electrical activities. Exp Eye Res. 1983 Feb;36(2):287–297. doi: 10.1016/0014-4835(83)90013-1. [DOI] [PubMed] [Google Scholar]
  37. la Cour M., Lund-Andersen H., Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol. 1986 Jun;375:461–479. doi: 10.1113/jphysiol.1986.sp016128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES