Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Jul;426:355–368. doi: 10.1113/jphysiol.1990.sp018142

Respiratory-related discharge pattern of sympathetic nerve activity in the spontaneously hypertensive rat.

M F Czyzyk-Krzeska 1, A Trzebski 1
PMCID: PMC1189892  PMID: 2231403

Abstract

1. Synchronization of spontaneous sympathetic discharge during the respiratory cycle was studied in the cervical and renal nerves of vagotomized, normotensive Wistar-Kyoto rats (WKYs) and age-matched spontaneously hypertensive rats (SHRs). Phrenic nerve discharge was used as an index of central inspiratory activity. 2. In normotensive Wistar-Kyoto rats depression of sympathetic activity appeared at the onset of inspiration reaching a minimum at mid-inspiration. Peak maximal sympathetic discharge corresponded to postinspiratory phase; a second increase sometimes appeared in late expiration. Variations of respiratory frequency over wide range of experimental conditions by hypoxia, hyperoxia, hyper- or hypocapnia and transection of carotid sinus nerves did not affect this pattern. 3. In SHRs the respiratory-phase-related timing of sympathetic discharge was variable. In normoxia, the maximal sympathetic activity occurred in late inspiration, preceded by short depression at early inspiration and followed by postinspiratory depression. A second increase in sympathetic activity was observed in mid-expiration. 4. The pattern of respiratory phase modulated sympathetic activity in SHRs was altered by hypoxic stimulation of the peripheral chemoreceptors. The early inspiratory depression of sympathetic activity was substantially prolonged and the maximal sympathetic discharge was shifted from inspiration to early expiration. This effect was abolished after carotid sinus nerves had been cut. 5. Hypercapnic stimulation of central chemoreceptors in SHRs with carotid sinus nerves cut did not influence the timing of the sympathetic activity in relation to the respiratory phase, though the magnitude of rhythmical sympathetic discharges was increased. 6. We discuss the possibility that altered synchronization between central respiratory drive and sympathetic neuronal system may contribute to the neurogenic mechanisms of arterial hypertension in SHRs.

Full text

PDF
355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D., Bronk D. W., Phillips G. Discharges in mammalian sympathetic nerves. J Physiol. 1932 Feb 8;74(2):115–133. doi: 10.1113/jphysiol.1932.sp002832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bainton C. R., Richter D. W., Seller H., Ballantyne D., Klein J. P. Respiratory modulation of sympathetic activity. J Auton Nerv Syst. 1985 Jan;12(1):77–90. doi: 10.1016/0165-1838(85)90041-4. [DOI] [PubMed] [Google Scholar]
  3. Baradziej S., Trzebski A. Specific areas of the ventral medulla controlling sympathetic and respiratory activities and their functional synchronization in the rat. Prog Brain Res. 1989;81:193–204. doi: 10.1016/s0079-6123(08)62009-9. [DOI] [PubMed] [Google Scholar]
  4. Eckberg D. L., Nerhed C., Wallin B. G. Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man. J Physiol. 1985 Aug;365:181–196. doi: 10.1113/jphysiol.1985.sp015766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuda Y., Sato A., Suzuki A., Trzebski A. Autonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxide levels in the rat. J Auton Nerv Syst. 1989 Oct;28(1):61–74. doi: 10.1016/0165-1838(89)90008-8. [DOI] [PubMed] [Google Scholar]
  6. Fukuda Y., Sato A., Trzebski A. Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats. J Auton Nerv Syst. 1987 Apr;19(1):1–11. doi: 10.1016/0165-1838(87)90139-1. [DOI] [PubMed] [Google Scholar]
  7. Gilbey M. P., Numao Y., Spyer K. M. Discharge patterns of cervical sympathetic preganglionic neurones related to central respiratory drive in the rat. J Physiol. 1986 Sep;378:253–265. doi: 10.1113/jphysiol.1986.sp016218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haselton J. R., Guyenet P. G. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Physiol. 1989 Mar;256(3 Pt 2):R739–R750. doi: 10.1152/ajpregu.1989.256.3.R739. [DOI] [PubMed] [Google Scholar]
  9. Iriuchijima J. Sympathetic discharge rate in spontaneously hypertensive rats. Jpn Heart J. 1973 Jul;14(4):350–356. doi: 10.1536/ihj.14.350. [DOI] [PubMed] [Google Scholar]
  10. Judy W. V., Watanabe A. M., Henry D. P., Besch H. R., Jr, Murphy W. R., Hockel G. M. Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res. 1976 Jun;38(6 Suppl 2):21–29. doi: 10.1161/01.res.38.6.21. [DOI] [PubMed] [Google Scholar]
  11. Lawson E. E., Richter D. W., Ballantyne D., Lalley P. M. Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. Pflugers Arch. 1989 Sep;414(5):523–533. doi: 10.1007/BF00580987. [DOI] [PubMed] [Google Scholar]
  12. Lipski J., Coote J. H., Trzebski A. Temporal patterns of antidromic invasion latencies of sympathetic preganglionic neurons related to central inspiratory activity and pulmonary stretch receptor reflex. Brain Res. 1977 Oct 21;135(1):162–166. doi: 10.1016/0006-8993(77)91061-7. [DOI] [PubMed] [Google Scholar]
  13. Lipski J., Trzebski A., Chodobska J., Kruk P. Effects of carotid chemoreceptor excitation on medullary expiratory neurons in cats. Respir Physiol. 1984 Sep;57(3):279–291. doi: 10.1016/0034-5687(84)90077-x. [DOI] [PubMed] [Google Scholar]
  14. McAllen R. M. Central respiratory modulation of subretrofacial bulbospinal neurones in the cat. J Physiol. 1987 Jul;388:533–545. doi: 10.1113/jphysiol.1987.sp016630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Millhorn D. E. Neural respiratory and circulatory interaction during chemoreceptor stimulation and cooling of ventral medulla in cats. J Physiol. 1986 Jan;370:217–231. doi: 10.1113/jphysiol.1986.sp015931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Numao Y., Koshiya N., Gilbey M. P., Spyer K. M. Central respiratory drive-related activity in sympathetic nerves of the rat: the regional differences. Neurosci Lett. 1987 Oct 29;81(3):279–284. doi: 10.1016/0304-3940(87)90396-x. [DOI] [PubMed] [Google Scholar]
  17. OKAMOTO K., AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282–293. doi: 10.1253/jcj.27.282. [DOI] [PubMed] [Google Scholar]
  18. Saether K., Hilaire G., Monteau R. Dorsal and ventral respiratory groups of neurons in the medulla of the rat. Brain Res. 1987 Sep 1;419(1-2):87–96. doi: 10.1016/0006-8993(87)90571-3. [DOI] [PubMed] [Google Scholar]
  19. Thorén P., Ricksten S. E. Recordings of renal and splanchnic sympathetic nervous activity in normotensive and spontaneously hypertensive rats. Clin Sci (Lond) 1979 Dec;57 (Suppl 5):197s–199s. doi: 10.1042/cs057197s. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES