Abstract
1. Ca2(+)-induced Ca2+ release (CICR) from the sarcoplasmic reticulum was measured by isometric tension recording from barnacle myofibrillar bundles. Laser-induced photolysis of the caged calcium molecule, nitr-5, was used to generate a rapid jump in free Ca2+ (within 1 ms) at the site of the sarcoplasmic reticulum, thus overcoming delays due to Ca2+ diffusion from the bathing solution. 2. The method consisted of equilibrating a myofibrillar bundle (100 micrograms diameter) in a solution containing 0.1 mM-nitr-5 (initial pCa 6.8-6.6) and then exposing it to a UV laser pulse. The resulting phasic contraction had an amplitude of up to 100% maximum tension (P0) in some preparations and a mean half-time for the rise of tension of 2.3 s at 12 degrees C. Longer half-times were obtained at low pulse energies. 3. Pre-treatment of the myofibrillar bundles with ryanodine (10(-4) M) or the detergent Triton X-100 abolished a large part of the phasic contraction, confirming its dependence on SR Ca2+ release. The small tonic response which remained had a shorter rise half-time than the Ca2(+)-induced Ca2+ release response and was attributed to direct activation of the myofibrils by Ca2+ released from the nitr-5. 4. The size of the photolytic Ca2+ jump was estimated from the amplitude of the fast tension component. By increasing the laser pulse energy or the initial Ca2+ loading of the nitr-5, the post-photolysis pCa was varied from 6.7 to 6.0; the CICR response increased in size over this pCa range. 5. Direct activation of Triton-treated myofibrils by photolysis of 2.0 mM-nitr-5 (initial pCa 6.4) gave contractions of up to 100% P0 and a mean rise half-time of 164 ms at 12 degrees C (n = 9 for contractions greater than 40% P0). Both the amplitude and the rate of these contractions were dependent on the laser pulse energy. 6. The Ca2(+)-induced Ca2+ release responses obtained with nitr-5 photolysis were significantly slower than the fastest rate of tetanus development which has been recorded from intact fibres of barnacle muscle (mean half-time = 177 ms at 12 degrees C). This could mean that either Ca2(+)-induced Ca2+ release is less efficient in isolated myofibrillar bundles than in intact fibres or that Ca2(+)-induced Ca2+ release is not the primary Ca2+ releasing mechanism in excitation-contraction coupling in barnacle muscle.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley C. C., Lea T. J. Calcium fluxes in single muscle fibres measured with a glass scintillator probe. J Physiol. 1978 Sep;282:307–331. doi: 10.1113/jphysiol.1978.sp012465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashley C. C., Moisescu D. G. Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J Physiol. 1977 Sep;270(3):627–652. doi: 10.1113/jphysiol.1977.sp011972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atwater I., Rojas E., Vergara J. Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control. J Physiol. 1974 Dec;243(2):523–551. doi: 10.1113/jphysiol.1974.sp010765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor S. M., Chandler W. K., Marshall M. W. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. J Physiol. 1983 Nov;344:625–666. doi: 10.1113/jphysiol.1983.sp014959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brum G., Stefani E., Rios E. Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog. Can J Physiol Pharmacol. 1987 Apr;65(4):681–685. doi: 10.1139/y87-112. [DOI] [PubMed] [Google Scholar]
- Caputo C., Dipolo R. Contractile activation phenomena in voltage-clamped barnacle muscle fiber. J Gen Physiol. 1978 May;71(5):467–488. doi: 10.1085/jgp.71.5.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Endo M., Tanaka M., Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34–36. doi: 10.1038/228034a0. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983 Jul;245(1):C1–14. doi: 10.1152/ajpcell.1983.245.1.C1. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells. Science. 1970 Jan 2;167(3914):58–59. doi: 10.1126/science.167.3914.58. [DOI] [PubMed] [Google Scholar]
- Gillis J. M., Thomason D., Lefèvre J., Kretsinger R. H. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil. 1982 Dec;3(4):377–398. doi: 10.1007/BF00712090. [DOI] [PubMed] [Google Scholar]
- Goblet C., Mounier Y. Calcium-induced calcium release mechanism from the sarcoplasmic reticulum in skinned crab muscle fibres. Cell Calcium. 1986 Apr;7(2):61–72. doi: 10.1016/0143-4160(86)90009-6. [DOI] [PubMed] [Google Scholar]
- Goldman Y. E., Simmons R. M. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol. 1984 May;350:497–518. doi: 10.1113/jphysiol.1984.sp015215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths P. J., Duchateau J. J., Maeda Y., Potter J. D., Ashley C. C. Mechanical characteristics of skinned and intact muscle fibres from the giant barnacle, Balanus nubilus. Pflugers Arch. 1990 Feb;415(5):554–565. doi: 10.1007/BF02583506. [DOI] [PubMed] [Google Scholar]
- Gurney A. M., Tsien R. Y., Lester H. A. Activation of a potassium current by rapid photochemically generated step increases of intracellular calcium in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 May;84(10):3496–3500. doi: 10.1073/pnas.84.10.3496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
- Kentish J. C., Barsotti R. J., Lea T. J., Mulligan I. P., Patel J. R., Ferenczi M. A. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3. Am J Physiol. 1990 Feb;258(2 Pt 2):H610–H615. doi: 10.1152/ajpheart.1990.258.2.H610. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Rojas E., Taylor R. E., Vergara J. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J Physiol. 1973 Mar;229(2):409–455. doi: 10.1113/jphysiol.1973.sp010146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
- Lea T. J. A comparison of the abilities of CO2/HCO3-., protonophores and changes in solution pH to release Ca2+ from the SR of barnacle myofibrillar bundles. Pflugers Arch. 1986 Mar;406(3):315–322. doi: 10.1007/BF00640921. [DOI] [PubMed] [Google Scholar]
- Lea T. J., Ashley C. C. Ca-induced Ca release from the sarcoplasmic reticulum of isolated myofibrillar bundles of barnacle muscle fibres. Pflugers Arch. 1989 Feb;413(4):401–406. doi: 10.1007/BF00584490. [DOI] [PubMed] [Google Scholar]
- Lea T. J., Griffiths P. J., Tregear R. T., Ashley C. C. An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea. FEBS Lett. 1986 Oct 20;207(1):153–161. doi: 10.1016/0014-5793(86)80031-x. [DOI] [PubMed] [Google Scholar]
- McCleskey E. W. Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle. J Physiol. 1985 Apr;361:231–249. doi: 10.1113/jphysiol.1985.sp015643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
- Mounier Y., Goblet C. Role of the different calcium sources in the excitation-contraction coupling in crab muscle fibers. Can J Physiol Pharmacol. 1987 Apr;65(4):667–671. doi: 10.1139/y87-110. [DOI] [PubMed] [Google Scholar]
- Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rojas E., Nassar-Gentina V., Luxoro M., Pollard M. E., Carrasco M. A. Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle. Can J Physiol Pharmacol. 1987 Apr;65(4):672–680. doi: 10.1139/y87-111. [DOI] [PubMed] [Google Scholar]
- Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Zucker R. S. Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophys J. 1986 Nov;50(5):843–853. doi: 10.1016/S0006-3495(86)83525-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
