Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Dec;419:141–156. doi: 10.1113/jphysiol.1989.sp017865

Chloride and bicarbonate transport in fetal red cells.

J Brahm 1, P D Wimberley 1
PMCID: PMC1190000  PMID: 2621626

Abstract

1. Chloride (JCl) and bicarbonate (JHCO3) self-exchange flux in fetal human red cells was studied at 0-38 degrees C as 36Cl- and [14C]HCO3- efflux. 2. Both at 0 and 38 degrees C JCl showed a bell-shaped pH dependence with a broad maximum at pH 7-8. JCl was 99.7% inhibited by the binding of 1.1 x 10(6) 4,4'-diisothiocyanostilbene-2,2'-disulphonate (DIDS) molecules per cell membrane. 3. By raising the temperature from 0 to 38 degrees C JCl, at external concentration (C0) = 150 mM, increased about 200 times to 5 x 10(-8) mol/(cm2 s), the half-time of the tracer efflux being 80 ms at 38 degrees C and pH 7.2. Under conditions where Co = (110 mM-Cl- + 25 mM-HCO3-), JCl also increased by about 200 times, while JHCO3 increased only about 100 times, as temperature was raised from 0 to 38 degrees C. 4. The apparent activation energy (EA) of Janion was not constant, but increased gradually with decreasing temperature. Assuming that the change of EA with temperature consists of two components JCl, under both experimental conditions, had average values of EA = 117-120 under and EA = 73-78 kJ/mol above a 'breaking' point at 15-20 degrees C, while JHCO3 showed an EA = 100 below and EA = 48 kJ/mol above 25 degrees C. 5. We conclude that the anion transport protein becomes built into the membrane at a very early stage of life, and that the kinetics of Janion in fetal red cells show characteristics that are similar to those of adult red cells. 6. Our results suggest that the CO2 transport capacity of the fetal blood can be exploited during rest nearly as efficiently as that of adult blood.

Full text

PDF
141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTON T. C., BROWN D. A. WATER PERMEABILITY OF THE FETAL ERYTHROCYTE. J Gen Physiol. 1964 May;47:839–849. doi: 10.1085/jgp.47.5.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck J. S. Relations between membrane monolayers in some red cell shape transformations. J Theor Biol. 1978 Dec 21;75(4):487–501. doi: 10.1016/0022-5193(78)90358-2. [DOI] [PubMed] [Google Scholar]
  3. Blisard K. S., Mieyal J. J. Differential monooxygenase-like activity of fetal and adult erythrocytes. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1261–1266. doi: 10.1016/0006-291x(80)90087-x. [DOI] [PubMed] [Google Scholar]
  4. Brahm J., Mortensen H. B. Anion transport as related to hemoglobin A1c in erythrocytes of diabetic children. Clin Chem. 1988 Jul;34(7):1414–1416. [PubMed] [Google Scholar]
  5. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  7. Chow E. I., Chen D. Kinetic characteristics of bicarbonate-chloride exchange across the neonatal human red cell membrane. Biochim Biophys Acta. 1982 Feb 23;685(2):196–202. doi: 10.1016/0005-2736(82)90098-0. [DOI] [PubMed] [Google Scholar]
  8. Chow E. I., Chen D. Rates of HCO3--Cl- exchange across membranes of adult and neonatal human red blood cells. Taiwan Yi Xue Hui Za Zhi. 1978 Aug;77(8):597–605. [PubMed] [Google Scholar]
  9. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gahr M., Meves H., Schröter W. Fetal properties in red blood cells of newborn infants. Pediatr Res. 1979 Nov;13(11):1231–1236. doi: 10.1203/00006450-197911000-00006. [DOI] [PubMed] [Google Scholar]
  12. Gil J. Morphologic aspects of alveolar microcirculation. Fed Proc. 1978 Sep;37(11):2462–2465. [PubMed] [Google Scholar]
  13. Jay A. W. Geometry of the human erythrocyte. I. Effect of albumin on cell geometry. Biophys J. 1975 Mar;15(3):205–222. doi: 10.1016/S0006-3495(75)85812-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kosztolányi G., Jobst K. Electrokinetic analysis of the fetal erythrocyte membrane after trypsin digestion. Pediatr Res. 1980 Feb;14(2):138–141. doi: 10.1203/00006450-198002000-00014. [DOI] [PubMed] [Google Scholar]
  15. Kurantsin-Mills J., Lessin L. S. Freeze-etching and biochemical analysis of human fetal erythrocyte membranes. Pediatr Res. 1984 Oct;18(10):1035–1041. doi: 10.1203/00006450-198410000-00026. [DOI] [PubMed] [Google Scholar]
  16. LaCelle P. L. Effect of sphering on erythrocyte deformability. Biorheology. 1972 Jun;9(2):51–59. doi: 10.3233/bir-1972-9202. [DOI] [PubMed] [Google Scholar]
  17. Light N. D., Tanner M. J. Erythrocyte membrane proteins. Sequential accumulation in the membrane during reticulocyte maturation. Biochim Biophys Acta. 1978 Apr 20;508(3):571–576. doi: 10.1016/0005-2736(78)90101-3. [DOI] [PubMed] [Google Scholar]
  18. Moore T. J. Glycerol permeability of human fetal and adult erythrocytes and of a model membrane. J Lipid Res. 1968 Sep;9(5):642–646. [PubMed] [Google Scholar]
  19. Neerhout R. C. Erythrocyte lipids in the neonate. Pediatr Res. 1968 May;2(3):172–178. doi: 10.1203/00006450-196805000-00003. [DOI] [PubMed] [Google Scholar]
  20. Poyart C., Bursaux E., Guesnon P., Teisseire B. Chloride binding and the Bohr effect of human fetal erythrocytes and HbFII solutions. Pflugers Arch. 1978 Sep 6;376(2):169–175. doi: 10.1007/BF00581580. [DOI] [PubMed] [Google Scholar]
  21. SJOLIN S. The resistance of red cells in vitro; a study of the osmotic properties, the mechanical resistance and the storage behaviour of red cells of fetuses, children and adults. Acta Paediatr Suppl. 1954 May;43(98):1–92. [PubMed] [Google Scholar]
  22. Shapiro D. L., Pasqualini P. Erythrocyte membrane proteins of premature and full-term newborn infants. Pediatr Res. 1978 Mar;12(3):176–178. doi: 10.1203/00006450-197803000-00003. [DOI] [PubMed] [Google Scholar]
  23. Shapiro D. L. Spectrin phosphorylation in intact neonatal and adult erythrocyte membranes. Arch Biochem Biophys. 1979 Mar;193(1):264–266. doi: 10.1016/0003-9861(79)90030-4. [DOI] [PubMed] [Google Scholar]
  24. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WESTERMAN M. P., PIERCE L. E., JENSEN W. N. A direct method for the quantitative measurement of red cell dimensions. J Lab Clin Med. 1961 May;57:819–824. [PubMed] [Google Scholar]
  26. Wagner P. D. Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev. 1977 Apr;57(2):257–312. doi: 10.1152/physrev.1977.57.2.257. [DOI] [PubMed] [Google Scholar]
  27. Weise M. J., Hoffman J. F. Anion transport in embryonic and adult chicken red blood cells. Life Sci. 1977 May 1;20(9):1565–1569. doi: 10.1016/0024-3205(77)90449-0. [DOI] [PubMed] [Google Scholar]
  28. Wieth J. O., Andersen O. S., Brahm J., Bjerrum P. J., Borders C. L., Jr Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):383–399. doi: 10.1098/rstb.1982.0139. [DOI] [PubMed] [Google Scholar]
  29. Wieth J. O. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. J Physiol. 1979 Sep;294:521–539. doi: 10.1113/jphysiol.1979.sp012944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. ZIPURSKY A., LARUE T., ISRAELS L. G. The in vitro metabolism of erythrocytes from newborn infants. Can J Biochem Physiol. 1960 Jul;38:727–738. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES