Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Jan;420:111–125. doi: 10.1113/jphysiol.1990.sp017903

Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurones.

G J Stuart 1, S J Redman 1
PMCID: PMC1190040  PMID: 2324981

Abstract

1. Inhibitory postsynaptic currents (IPSCs) were recorded in voltage clamped posterior biceps or semitendinosus motoneurones of the cat during reciprocal inhibition. 2. Population IPSCs, recorded following stimulation of the whole quadriceps muscle nerve, had an average time-to-peak of 0.51 +/- 0.02 ms (+/- S.E.M., n = 22) and decayed exponentially, with an average time constant of 0.99 +/- 0.04 ms (at 37 degrees C) at resting membrane potentials. 3. Unitary IPSCs, recorded following spike-triggered averaging from an identified reciprocal inhibitory interneurone, had amplitudes of 120-220 pA with an average time-to-peak of 0.40 +/- 0.06 ms (n = 5). The decay of these unitary currents was exponential, with an average time constant of 0.82 +/- 0.07 ms (at 37 degrees C) at resting membrane potentials. 4. The time course of IPSCs was unaffected by either alpha-chloralose or pentobarbitone at concentrations necessary for deep anaesthesia. 5. The peak synaptic current varied linearly with the membrane potential over the range -90 to -30 mV, and had an average reversal potential of -80.7 +/- 1.5 mV (+/- S.E.M., n = 6) when measured using KCH3SO4-filled electrodes. 6. The reversal potential for the IPSC was used to calculate [Cl-]i. This was estimated to be 6.5 mM assuming that the inhibitory synaptic current was mediated purely by Cl- ions. 7. The rate at which synaptic currents decayed was exponentially dependent on the postsynaptic membrane potential, the decay time constant increasing e-fold for a 91 mV depolarization. This result was independent of [Cl-]i or of the magnitude of the synaptic conductance and was interpreted as a voltage dependence of the glycine channel open time. 8. The average unitary peak conductance was 9.1 +/- 1.7 nS (+/- S.E.M., n = 5), corresponding to the opening of approximately 200 glycine-activated postsynaptic channels following neurotransmitter release from a single Ia reciprocal interneurone.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., TERZUOLO C. A. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J Neurophysiol. 1962 Nov;25:772–789. doi: 10.1152/jn.1962.25.6.772. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aprison M. H., Werman R. The distribution of glycine in cat spinal cord and roots. Life Sci. 1965 Nov;4(21):2075–2083. doi: 10.1016/0024-3205(65)90325-5. [DOI] [PubMed] [Google Scholar]
  4. Barker J. L., McBurney R. N. GABA and glycine may share the same conductance channel on cultured mammalian neurones. Nature. 1979 Jan 18;277(5693):234–236. doi: 10.1038/277234a0. [DOI] [PubMed] [Google Scholar]
  5. Barker J. L., McBurney R. N., MacDonald J. F. Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J Physiol. 1982 Jan;322:365–387. doi: 10.1113/jphysiol.1982.sp014042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collingridge G. L., Gage P. W., Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol. 1984 Nov;356:551–564. doi: 10.1113/jphysiol.1984.sp015482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curtis D. R., Hösli L., Johnston G. A., Johnston I. H. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5(3):235–258. doi: 10.1007/BF00238666. [DOI] [PubMed] [Google Scholar]
  10. ECCLES J. C., FATT P., LANDGREN S. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J Neurophysiol. 1956 Jan;19(1):75–98. doi: 10.1152/jn.1956.19.1.75. [DOI] [PubMed] [Google Scholar]
  11. Faber D. S., Korn H. Single-shot channel activation accounts for duration of inhibitory postsynaptic potentials in a central neuron. Science. 1980 May 9;208(4444):612–615. doi: 10.1126/science.6245449. [DOI] [PubMed] [Google Scholar]
  12. Faber D. S., Korn H. Transmission at a central inhibitory synapse. I. Magnitude of unitary postsynaptic conductance change and kinetics of channel activation. J Neurophysiol. 1982 Sep;48(3):654–678. doi: 10.1152/jn.1982.48.3.654. [DOI] [PubMed] [Google Scholar]
  13. Faber D. S., Korn H. Voltage-dependence of glycine-activated Cl- channels: a potentiometer for inhibition? J Neurosci. 1987 Mar;7(3):807–811. doi: 10.1523/JNEUROSCI.07-03-00807.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Finkel A. S., Redman S. J. The synaptic current evoked in cat spinal motoneurones by impulses in single group 1a axons. J Physiol. 1983 Sep;342:615–632. doi: 10.1113/jphysiol.1983.sp014872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finkel A. S., Redman S. A shielded microelectrode suitable for single-electrode voltage clamping of neurones in the CNS. J Neurosci Methods. 1983 Sep;9(1):23–29. doi: 10.1016/0165-0270(83)90105-x. [DOI] [PubMed] [Google Scholar]
  16. Forsythe I. D., Redman S. J. The dependence of motoneurone membrane potential on extracellular ion concentrations studied in isolated rat spinal cord. J Physiol. 1988 Oct;404:83–99. doi: 10.1113/jphysiol.1988.sp017280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gold M. R., Martin A. R. Analysis of glycine-activated inhibitory post-synaptic channels in brain-stem neurones of the lamprey. J Physiol. 1983 Sep;342:99–117. doi: 10.1113/jphysiol.1983.sp014842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gold M. R., Martin A. R. Characteristics of inhibitory post-synaptic currents in brain-stem neurones of the lamprey. J Physiol. 1983 Sep;342:85–98. doi: 10.1113/jphysiol.1983.sp014841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gold M. R., Martin A. R. Intracellular Cl- accumulation reduces Cl- conductance in inhibitory synaptic channels. Nature. 1982 Oct 28;299(5886):828–830. doi: 10.1038/299828a0. [DOI] [PubMed] [Google Scholar]
  20. Gundersen C. B., Miledi R., Parker I. Properties of human brain glycine receptors expressed in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1984 Apr 24;221(1223):235–244. doi: 10.1098/rspb.1984.0032. [DOI] [PubMed] [Google Scholar]
  21. Hamill O. P., Bormann J., Sakmann B. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. 1983 Oct 27-Nov 2Nature. 305(5937):805–808. doi: 10.1038/305805a0. [DOI] [PubMed] [Google Scholar]
  22. Hultborn H., Jankowska E., Lindström S. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J Physiol. 1971 Jul;215(3):613–636. doi: 10.1113/jphysiol.1971.sp009488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jankowska E., Roberts W. J. Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J Physiol. 1972 May;222(3):623–642. doi: 10.1113/jphysiol.1972.sp009818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Korn H., Mallet A., Triller A., Faber D. S. Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. J Neurophysiol. 1982 Sep;48(3):679–707. doi: 10.1152/jn.1982.48.3.679. [DOI] [PubMed] [Google Scholar]
  26. Lux H. D. Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal motoneurons. Science. 1971 Aug 6;173(3996):555–557. doi: 10.1126/science.173.3996.555. [DOI] [PubMed] [Google Scholar]
  27. Magleby K. L., Stevens C. F. The effect of voltage on the time course of end-plate currents. J Physiol. 1972 May;223(1):151–171. doi: 10.1113/jphysiol.1972.sp009839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Onodera K., Takeuchi A. Inhibitory postsynaptic current in voltage-clamped crayfish muscle. Nature. 1976 Sep 9;263(5573):153–154. doi: 10.1038/263153a0. [DOI] [PubMed] [Google Scholar]
  29. Rastad J. Ultrastructural morphology of axon terminals of an inhibitory spinal interneurone in the cat. Brain Res. 1981 Nov 2;223(2):397–401. doi: 10.1016/0006-8993(81)91154-9. [DOI] [PubMed] [Google Scholar]
  30. Robertson B. Characteristics of GABA-activated chloride channels in mammalian dorsal root ganglion neurones. J Physiol. 1989 Apr;411:285–300. doi: 10.1113/jphysiol.1989.sp017574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segal M., Barker J. L. Rat hippocampal neurons in culture: properties of GABA-activated Cl- ion conductance. J Neurophysiol. 1984 Mar;51(3):500–515. doi: 10.1152/jn.1984.51.3.500. [DOI] [PubMed] [Google Scholar]
  32. Segal M., Barker J. L. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. J Neurophysiol. 1984 Sep;52(3):469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  33. Soffe S. R. Ionic and pharmacological properties of reciprocal inhibition in Xenopus embryo motoneurones. J Physiol. 1987 Jan;382:463–473. doi: 10.1113/jphysiol.1987.sp016378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vogh B. P., Maren T. H. Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. Am J Physiol. 1975 Mar;228(3):673–683. doi: 10.1152/ajplegacy.1975.228.3.673. [DOI] [PubMed] [Google Scholar]
  36. van den Pol A. N., Gorcs T. Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci. 1988 Feb;8(2):472–492. doi: 10.1523/JNEUROSCI.08-02-00472.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES