Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Feb;421:55–77. doi: 10.1113/jphysiol.1990.sp017933

Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells.

R Jacob 1
PMCID: PMC1190073  PMID: 2348402

Abstract

1. The free cytoplasmic Ca2+ concentration ([Ca2+]i) can be measured using Fura-2 in superfused single human umbilical vein endothelial cells. When an endothelial cell is stimulated by a maximal dose of histamine (100 microM), [Ca2+]i rises to a peak and then falls back to a maintained plateau which is due to a stimulated Ca2+ influx. 2. If extracellular Ca2+ is replaced by 50 microM-Mn2+ then 100 microM-histamine causes a rise in [Ca2+]i accompanied by a fluorescence quench that signals the stimulated entry of Mn2+ into the cytoplasm. 3. If in Ca2(+)-free solution a cell is stimulated by 100 microM-histamine for 120 s to discharge the internal Ca2+ store, and then exposed to 50 microM-Mn2+ after removal of the histamine, a similar stimulated Mn2+ entry is seen. This quench is unaffected by readdition of histamine and is not seen if the store is refilled by exposure to 1 mM-extracellular Ca2+ for 180 s before exposure to the Mn2+. 4. The refilling of the internal store by exposure to 1 mM-Ca2+ and the stimulated entry of Mn2+ are both blocked by 2 mM-Ni2+. 5. If [Ca2+]i is stimulated to produce repetitive spikes by a low dose of histamine (0.3-1 microM) in nominally Ca2(+)-free solution containing Mn2+, then the stimulated quench is uniform and is not modulated by the [Ca2+]i spiking. 6. If the internal store is discharged by exposure to histamine in Ca2(+)-free solution and then refilled for a short period then the cell is in a state where the internal store is partly full to an extent that depends on the duration of the refilling. In such an experiment, the rate of Mn2+ influx may be estimated by measuring the rate of quench during a short exposure to 50 microM-Mn2+. The rate of Mn2+ entry varies inversely with the degree of fullness of the internal Ca2+ store. 7. If a similar experiment is repeated but with the fullness of the internal store being varied by varying the period of the initial exposure to 100 microM-histamine, with no refilling, the same inverse relationship between Mn2+ influx and fullness of the internal store is obtained. 8. These experiments show that Mn2+ enters human umbilical vein endothelial cells following agonist stimulation by a pathway that is controlled by the degree of fullness of the internal store; it does not, however, enter the cytoplasm by exactly the same route as Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aub D. L., McKinney J. S., Putney J. W., Jr Nature of the receptor-regulated calcium pool in the rat parotid gland. J Physiol. 1982 Oct;331:557–565. doi: 10.1113/jphysiol.1982.sp014391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  3. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  4. Hallam T. J., Jacob R., Merritt J. E. Evidence that agonists stimulate bivalent-cation influx into human endothelial cells. Biochem J. 1988 Oct 1;255(1):179–184. doi: 10.1042/bj2550179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hallam T. J., Jacob R., Merritt J. E. Influx of bivalent cations can be independent of receptor stimulation in human endothelial cells. Biochem J. 1989 Apr 1;259(1):125–129. doi: 10.1042/bj2590125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hallam T. J., Pearson J. D., Needham L. A. Thrombin-stimulated elevation of human endothelial-cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J. 1988 Apr 1;251(1):243–249. doi: 10.1042/bj2510243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hallam T. J., Rink T. J. Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett. 1985 Jul 8;186(2):175–179. doi: 10.1016/0014-5793(85)80703-1. [DOI] [PubMed] [Google Scholar]
  8. Hughes A. R., Takemura H., Putney J. W., Jr Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. Relationship to calcium signalling. J Biol Chem. 1988 Jul 25;263(21):10314–10319. [PubMed] [Google Scholar]
  9. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johansson H., Larsson R., Wallfelt C., Rastad J., Akerström G., Gylfe E. Calcium-agonistic action of Mn2+ in the parathyroid cell. Mol Cell Endocrinol. 1988 Sep;59(1-2):77–82. doi: 10.1016/0303-7207(88)90197-9. [DOI] [PubMed] [Google Scholar]
  11. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  12. Lo W. W., Fan T. P. Histamine stimulates inositol phosphate accumulation via the H1-receptor in cultured human endothelial cells. Biochem Biophys Res Commun. 1987 Oct 14;148(1):47–53. doi: 10.1016/0006-291x(87)91074-6. [DOI] [PubMed] [Google Scholar]
  13. Matsunaga H., Nishimoto I., Kojima I., Yamashita N., Kurokawa K., Ogata E. Activation of a calcium-permeable cation channel by insulin-like growth factor II in BALB/c 3T3 cells. Am J Physiol. 1988 Oct;255(4 Pt 1):C442–C446. doi: 10.1152/ajpcell.1988.255.4.C442. [DOI] [PubMed] [Google Scholar]
  14. Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987 Dec;394:501–527. doi: 10.1113/jphysiol.1987.sp016883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Merritt J. E., Hallam T. J. Platelets and parotid acinar cells have different mechanisms for agonist-stimulated divalent cation entry. J Biol Chem. 1988 May 5;263(13):6161–6164. [PubMed] [Google Scholar]
  16. Merritt J. E., Jacob R., Hallam T. J. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem. 1989 Jan 25;264(3):1522–1527. [PubMed] [Google Scholar]
  17. Merritt J. E., Rink T. J. Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J Biol Chem. 1987 Dec 25;262(36):17362–17369. [PubMed] [Google Scholar]
  18. Morris A. P., Gallacher D. V., Irvine R. F., Petersen O. H. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. doi: 10.1038/330653a0. [DOI] [PubMed] [Google Scholar]
  19. Muallem S., Schoeffield M. S., Fimmel C. J., Pandol S. J. Agonist-sensitive calcium pool in the pancreatic acinar cell. I. Permeability properties. Am J Physiol. 1988 Aug;255(2 Pt 1):G221–G228. doi: 10.1152/ajpgi.1988.255.2.G221. [DOI] [PubMed] [Google Scholar]
  20. Negulescu P. A., Machen T. E. Release and reloading of intracellular Ca stores after cholinergic stimulation of the parietal cell. Am J Physiol. 1988 Apr;254(4 Pt 1):C498–C504. doi: 10.1152/ajpcell.1988.254.4.C498. [DOI] [PubMed] [Google Scholar]
  21. Nelson M. T. Interactions of divalent cations with single calcium channels from rat brain synaptosomes. J Gen Physiol. 1986 Feb;87(2):201–222. doi: 10.1085/jgp.87.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pandol S. J., Schoeffield M. S., Fimmel C. J., Muallem S. The agonist-sensitive calcium pool in the pancreatic acinar cell. Activation of plasma membrane Ca2+ influx mechanism. J Biol Chem. 1987 Dec 15;262(35):16963–16968. [PubMed] [Google Scholar]
  23. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  24. Poggioli J., Putney J. W., Jr Net calcium fluxes in rat parotid acinar cells: evidence for a hormone-sensitive calcium pool in or near the plasma membrane. Pflugers Arch. 1982 Jan;392(3):239–243. doi: 10.1007/BF00584303. [DOI] [PubMed] [Google Scholar]
  25. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  26. Resink T. J., Grigorian GYu, Moldabaeva A. K., Danilov S. M., Bühler F. R. Histamine-induced phosphoinositide metabolism in cultured human umbilical vein endothelial cells. Association with thromboxane and prostacyclin release. Biochem Biophys Res Commun. 1987 Apr 14;144(1):438–446. doi: 10.1016/s0006-291x(87)80529-6. [DOI] [PubMed] [Google Scholar]
  27. Rink T. J., Hallam T. J. Calcium signalling in non-excitable cells: notes on oscillations and store refilling. Cell Calcium. 1989 Jul;10(5):385–395. doi: 10.1016/0143-4160(89)90064-x. [DOI] [PubMed] [Google Scholar]
  28. Rotrosen D., Gallin J. I. Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers. J Cell Biol. 1986 Dec;103(6 Pt 1):2379–2387. doi: 10.1083/jcb.103.6.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takemura H., Putney J. W., Jr Capacitative calcium entry in parotid acinar cells. Biochem J. 1989 Mar 1;258(2):409–412. doi: 10.1042/bj2580409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tsien R. W., Hess P., McCleskey E. W., Rosenberg R. L. Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem. 1987;16:265–290. doi: 10.1146/annurev.bb.16.060187.001405. [DOI] [PubMed] [Google Scholar]
  32. Zschauer A., van Breemen C., Bühler F. R., Nelson M. T. Calcium channels in thrombin-activated human platelet membrane. Nature. 1988 Aug 25;334(6184):703–705. doi: 10.1038/334703a0. [DOI] [PubMed] [Google Scholar]
  33. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES