Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Feb;421:151–170. doi: 10.1113/jphysiol.1990.sp017938

gamma-Aminobutyric acid responses in rat locus coeruleus neurones in vitro: a current-clamp and voltage-clamp study.

S S Osmanović 1, S A Shefner 1
PMCID: PMC1190078  PMID: 2348390

Abstract

1. Intracellular recordings were made from locus coeruleus (LC) neurones in a totally submerged brain slice preparation from adult rats. The effect of gamma-aminobutyric acid (GABA) on LC neurones was studied under current-clamp and voltage-clamp conditions. GABA caused inhibition of spontaneous firing and a large conductance increase in LC neurones. These effects could be accompanied by depolarization, hyperpolarization or little change in membrane potential depending on the presence or absence of Cl- in the recording microelectrode. 2. The reversal potential for GABA-induced changes in membrane potential (EGABA) was -71.3 +/- 1.1 mV (S.E.M., n = 21) in cells impaled with potassium acetate electrodes and -47.5 +/- 1.4 mV (S.E.M., n = 15) in cells impaled with KCl electrodes. When the external Cl- concentration was reduced EGABA was shifted in the depolarizing direction by 51.5 mV per tenfold change in external Cl- which is close to the shift predicted by the Nernst equation for a selective increase in CL- conductance. 3. GABA effects on LC neurones result from a direct action since they persist in low-Ca2+ and high-Mg2+ media which block synaptic transmission. 4. The effects of GABA were concentration dependent and antagonized by bicuculline (10 microM) and bicuculline methiodide (80-100 microM) indicating that they were mediated predominantly by an action on GABAA receptors. In the presence of bicuculline, EGABA was shifted towards the K+ equilibrium potential which indicated a residual bicuculline-resistant action at GABAB receptors. 5. GABA-induced responses were membrane potential dependent. GABA conductance was observed to decrease with membrane hyperpolarization in a linear manner. GABA-induced current showed outward rectification. In the voltage range studied (rest to -110 mV) the extent of this rectification was predicted by the Goldman-Hodgkin-Katz equation, suggesting that it was due to the unequal distribution of Cl- across the membrane. In addition, the time constant of decay of GABA current was decreased by membrane hyperpolarization; this could be due to a voltage-dependent change in receptor or channel kinetics. 6. These data suggest that the primary action of GABA on LC neurones is to increase Cl- conductance by activation of bicuculline-sensitive GABAA receptors. Due to the voltage dependence of GABA responses, GABA will exert a stronger inhibitory effect on LC neurones at depolarized than at hyperpolarized membrane potentials. This could serve as a negative feedback mechanism to control excitability of these neurones.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975 Aug;250(1):85–120. doi: 10.1113/jphysiol.1975.sp011044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams P. R., Constanti A., Banks F. W. Voltage clamp analysis of inhibitory synaptic action in crayfish stretch receptor neurons. Fed Proc. 1981 Sep;40(11):2637–2641. [PubMed] [Google Scholar]
  3. Akaike N., Inomata N., Tokutomi N. Contribution of chloride shifts to the fade of gamma-aminobutyric acid-gated currents in frog dorsal root ganglion cells. J Physiol. 1987 Oct;391:219–234. doi: 10.1113/jphysiol.1987.sp016735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alger B. E., Nicoll R. A. Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol. 1982 Jul;328:125–141. doi: 10.1113/jphysiol.1982.sp014256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashwood T. J., Collingridge G. L., Herron C. E., Wheal H. V. Voltage-clamp analysis of somatic gamma-aminobutyric acid responses in adult rat hippocampal CA1 neurones in vitro. J Physiol. 1987 Mar;384:27–37. doi: 10.1113/jphysiol.1987.sp016441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aston-Jones G., Ennis M., Pieribone V. A., Nickell W. T., Shipley M. T. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science. 1986 Nov 7;234(4777):734–737. doi: 10.1126/science.3775363. [DOI] [PubMed] [Google Scholar]
  7. Barker J. L., Ransom B. R. Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:331–354. doi: 10.1113/jphysiol.1978.sp012387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Belin M. F., Aguera M., Tappaz M., McRae-Degueurce A., Bobillier P., Pujol J. F. GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: a biochemical and radioautographic study. Brain Res. 1979 Jul 13;170(2):279–297. doi: 10.1016/0006-8993(79)90107-0. [DOI] [PubMed] [Google Scholar]
  9. Berod A., Chat M., Paut L., Tappaz M. Catecholaminergic and GABAergic anatomical relationship in the rat substantia nigra, locus coeruleus, and hypothalamic median eminence: immunocytochemical visualization of biosynthetic enzymes on serial semithin plastic-embedded sections. J Histochem Cytochem. 1984 Dec;32(12):1331–1338. doi: 10.1177/32.12.6150057. [DOI] [PubMed] [Google Scholar]
  10. Brown D. A., Scholfield C. N. Depolarization of neurones in the isolated olfactory cortex of the guinea-pig by gamma-aminobutyric acid. Br J Pharmacol. 1979 Feb;65(2):339–345. doi: 10.1111/j.1476-5381.1979.tb07835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cherubini E., North R. A., Williams J. T. Synaptic potentials in rat locus coeruleus neurones. J Physiol. 1988 Dec;406:431–442. doi: 10.1113/jphysiol.1988.sp017389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Collingridge G. L., Gage P. W., Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol. 1984 Nov;356:551–564. doi: 10.1113/jphysiol.1984.sp015482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ennis M., Aston-Jones G. GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci. 1989 Aug;9(8):2973–2981. doi: 10.1523/JNEUROSCI.09-08-02973.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gray R., Johnston D. Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol. 1985 Jul;54(1):134–142. doi: 10.1152/jn.1985.54.1.134. [DOI] [PubMed] [Google Scholar]
  16. Guyenet P. G., Aghajanian G. K. ACh, substance P and met-enkephalin in the locus coeruleus: pharmacological evidence for independent sites of action. Eur J Pharmacol. 1979 Feb 1;53(4):319–328. doi: 10.1016/0014-2999(79)90455-2. [DOI] [PubMed] [Google Scholar]
  17. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamill O. P., Bormann J., Sakmann B. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. 1983 Oct 27-Nov 2Nature. 305(5937):805–808. doi: 10.1038/305805a0. [DOI] [PubMed] [Google Scholar]
  19. Mason W. T., Poulain D., Cobbett P. gamma-Aminobutyric acid as an inhibitory neurotransmitter in the rat supraoptic nucleus: intracellular recordings in the hypothalamic slice. Neurosci Lett. 1987 Jan 27;73(3):259–265. doi: 10.1016/0304-3940(87)90255-2. [DOI] [PubMed] [Google Scholar]
  20. Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Osmanović S. S., Shefner S. A. Anomalous rectification in rat locus coeruleus neurons. Brain Res. 1987 Aug 4;417(1):161–166. doi: 10.1016/0006-8993(87)90193-4. [DOI] [PubMed] [Google Scholar]
  22. Osmanović S. S., Shefner S. A. Baclofen increases the potassium conductance of rat locus coeruleus neurons recorded in brain slices. Brain Res. 1988 Jan 12;438(1-2):124–136. doi: 10.1016/0006-8993(88)91331-5. [DOI] [PubMed] [Google Scholar]
  23. Palacios J. M., Wamsley J. K., Kuhar M. J. High affinity GABA receptors-autoradiographic localization. Brain Res. 1981 Oct 19;222(2):285–307. doi: 10.1016/0006-8993(81)91034-9. [DOI] [PubMed] [Google Scholar]
  24. Pérez de la Mora M., Possani L. D., Tapia R., Teran L., Palacios R., Fuxe K., Hökfelt T., Ljungdahl A. Demonstration of central gamma-aminobutyrate-containing nerve terminals by means of antibodies against glutamate decarboxylase. Neuroscience. 1981;6(5):875–895. doi: 10.1016/0306-4522(81)90169-x. [DOI] [PubMed] [Google Scholar]
  25. Scharfman H. E., Sarvey J. M. Responses to gamma-aminobutyric acid applied to cell bodies and dendrites of rat visual cortical neurons. Brain Res. 1985 Dec 9;358(1-2):385–389. doi: 10.1016/0006-8993(85)90990-4. [DOI] [PubMed] [Google Scholar]
  26. Segal M., Barker J. L. Rat hippocampal neurons in culture: properties of GABA-activated Cl- ion conductance. J Neurophysiol. 1984 Mar;51(3):500–515. doi: 10.1152/jn.1984.51.3.500. [DOI] [PubMed] [Google Scholar]
  27. Shefner S. A., Chiu T. H. Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation. Brain Res. 1986 Feb 26;366(1-2):364–368. doi: 10.1016/0006-8993(86)91320-x. [DOI] [PubMed] [Google Scholar]
  28. Suzdak P. D., Gianutsos G. GABA-noradrenergic interaction: evidence for differential sites of action for GABA-A and GABA-B receptors. J Neural Transm. 1985;64(3-4):163–172. doi: 10.1007/BF01256464. [DOI] [PubMed] [Google Scholar]
  29. Weiss D. S., Barnes E. M., Jr, Hablitz J. J. Whole-cell and single-channel recordings of GABA-gated currents in cultured chick cerebral neurons. J Neurophysiol. 1988 Feb;59(2):495–513. doi: 10.1152/jn.1988.59.2.495. [DOI] [PubMed] [Google Scholar]
  30. Weiss D. S. Membrane potential modulates the activation of GABA-gated channels. J Neurophysiol. 1988 Feb;59(2):514–527. doi: 10.1152/jn.1988.59.2.514. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES