Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Feb;421:363–378. doi: 10.1113/jphysiol.1990.sp017949

Depletion of intracellular free Mg2+ in Mg2(+)- and Ca2(+)-free solution in the taenia isolated from guinea-pig caecum.

S Nakayama 1, T Tomita 1
PMCID: PMC1190089  PMID: 2348397

Abstract

1. In isolated strips of the taenia of guinea-pig caecum removal of Mg2+ alone from the external solution had no clear effects on contractions produced by carbachol. However, after treatment with Mg2(+)- and Ca2(+)-free solution, readmission of 2.4 mM-Ca2+ caused only limited recovery, and addition of Mg2+ was necessary for full recovery. 2. When Mg2+ was removed in the absence of Ca2+, oxygen consumption increased, but gradually decreased again in the prolonged absence of the divalent cations. The increase in O2 consumption was blocked by ouabain or by decreasing the external sodium concentration to 20 mM. 3. Under normal conditions, the intracellular free Mg2+ concentration [( Mg2+]i) was estimated to be 310 +/- 30 microM (n = 17) from the chemical shift of the ATP peaks obtained with 31P nuclear magnetic resonance (NMR), assuming the dissociation constant of MgATP to be 41 microM. 4. Removal of external Mg2+ did not alter [Mg2+]i within 100 min. However, when both Mg2+ and Ca2+ were omitted, [Mg2+]i decreased to 8.3 +/- 3.6 microM (n = 12) in 100 min. The [Mg2+]i recovered completely on readmission of 1.2 mM-Mg2+. 5. When Mg2+ and Ca2+ were omitted, the phosphocreatine (PCr) content of the tissue slowly decreased to about 90% and the ATP concentration was reduced to about 60% of the control in 100 min. On Mg2+ readmission the ATP levels recovered partially, whereas PCr decreased further. 6. It is concluded that free [Mg2+]i slowly decreases when both Mg2+ and Ca2+ are removed from the external solution, due to an increased permeability of the plasma membrane, and that when [Mg2+]i is reduced to less than about 10% of the normal internal concentration, energy metabolism, membrane transport, and contraction are impaired.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Altura B. T. Magnesium and vascular tone and reactivity. Blood Vessels. 1978;15(1-3):5–16. doi: 10.1159/000158148. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Leefmans F. J., Giraldez F., Gamiño S. M. Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can J Physiol Pharmacol. 1987 May;65(5):915–925. doi: 10.1139/y87-147. [DOI] [PubMed] [Google Scholar]
  3. Arnold T. H., Tackett R. L. Effects of magnesium on the action of vasodilatory agents. Pharmacology. 1985;31(4):218–224. doi: 10.1159/000138118. [DOI] [PubMed] [Google Scholar]
  4. Ashoori F., Takai A., Tokuno H., Tomita T. Effects of glucose removal and readmission on potassium contracture in the guinea-pig taenia coli. J Physiol. 1984 Nov;356:33–48. doi: 10.1113/jphysiol.1984.sp015451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop E. O., Kimber S. J., Orchard D., Smith B. E. A 31P-NMR study of mono- and dimagnesium complexes of adenosine 5'-triphosphate and model systems. Biochim Biophys Acta. 1981 Mar 12;635(1):63–72. doi: 10.1016/0005-2728(81)90007-4. [DOI] [PubMed] [Google Scholar]
  6. Dawson M. J., Wray S. The effects of pregnancy and parturition on phosphorus metabolites in rat uterus studied by 31P nuclear magnetic resonance. J Physiol. 1985 Nov;368:19–31. doi: 10.1113/jphysiol.1985.sp015844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Degani H., Shaer A., Victor T. A., Kaye A. M. Estrogen-induced changes in high-energy phosphate metabolism in rat uterus: 31P NMR studies. Biochemistry. 1984 Jun 5;23(12):2572–2577. doi: 10.1021/bi00307a006. [DOI] [PubMed] [Google Scholar]
  8. Flatman P. W., Lew V. L. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells. J Physiol. 1981 Jun;315:421–446. doi: 10.1113/jphysiol.1981.sp013756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ford G. D., Driska S. P. Influence of altering cellular magnesium content on vascular smooth muscle contractility. Am J Physiol. 1986 Nov;251(5 Pt 1):C687–C695. doi: 10.1152/ajpcell.1986.251.5.C687. [DOI] [PubMed] [Google Scholar]
  10. Gupta R. K., Benovic J. L. Magnetic resonance studies of the interaction of divalent metal cations with 2,3-bisphosphoglycerate. Biochem Biophys Res Commun. 1978 Sep 14;84(1):130–137. doi: 10.1016/0006-291x(78)90273-5. [DOI] [PubMed] [Google Scholar]
  11. Gupta R. K., Benovic J. L., Rose Z. B. Magnetic resonance studies of the binding of ATP and cations to human hemoglobin. J Biol Chem. 1978 Sep 10;253(17):6165–6171. [PubMed] [Google Scholar]
  12. Gupta R. K., Benovic J. L., Rose Z. B. The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem. 1978 Sep 10;253(17):6172–6176. [PubMed] [Google Scholar]
  13. Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
  14. Gupta R. K., Gupta P., Yushok W. D., Rose Z. B. Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun. 1983 Nov 30;117(1):210–216. doi: 10.1016/0006-291x(83)91562-0. [DOI] [PubMed] [Google Scholar]
  15. Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
  16. Hellstrand P., Vogel H. J. Phosphagens and intracellular pH in intact rabbit smooth muscle studied by 31P-NMR. Am J Physiol. 1985 Mar;248(3 Pt 1):C320–C329. doi: 10.1152/ajpcell.1985.248.3.C320. [DOI] [PubMed] [Google Scholar]
  17. Ikebe M., Barsotti R. J., Hinkins S., Hartshorne D. J. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers. Biochemistry. 1984 Oct 9;23(21):5062–5068. doi: 10.1021/bi00316a036. [DOI] [PubMed] [Google Scholar]
  18. Ikebe M., Hartshorne D. J. Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J Biol Chem. 1985 Oct 25;260(24):13146–13153. [PubMed] [Google Scholar]
  19. Karaki H., Ahn H. Y., Nakagawa H., Urakawa N. Increase in membrane permeability in the absence of Ca and Mg in the smooth muscle of guinea-pig taenia coli. Jpn J Pharmacol. 1985 Jan;37(1):59–65. doi: 10.1254/jjp.37.59. [DOI] [PubMed] [Google Scholar]
  20. Kushmerick M. J., Dillon P. F., Meyer R. A., Brown T. R., Krisanda J. M., Sweeney H. L. 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem. 1986 Nov 5;261(31):14420–14429. [PubMed] [Google Scholar]
  21. Nakayama S., Seo Y., Takai A., Tomita T., Watari H. Phosphorous compounds studied by 31P nuclear magnetic resonance spectroscopy in the taenia of guinea-pig caecum. J Physiol. 1988 Aug;402:565–578. doi: 10.1113/jphysiol.1988.sp017222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Palatý V. Distribution of magnesium in the arterial wall. J Physiol. 1971 Oct;218(2):353–368. doi: 10.1113/jphysiol.1971.sp009622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paul R. J., Rüegg J. C. Role of magnesium in activation of smooth muscle. Am J Physiol. 1988 Oct;255(4 Pt 1):C465–C472. doi: 10.1152/ajpcell.1988.255.4.C465. [DOI] [PubMed] [Google Scholar]
  24. Saida K., Nonomura Y. Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers. J Gen Physiol. 1978 Jul;72(1):1–14. doi: 10.1085/jgp.72.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saks V. A., Chernousova G. B., Gukovsky D. E., Smirnov V. N., Chazov E. I. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Eur J Biochem. 1975 Sep 1;57(1):273–290. doi: 10.1111/j.1432-1033.1975.tb02299.x. [DOI] [PubMed] [Google Scholar]
  26. Spurway N. C., Wray S. A phosphorus nuclear magnetic resonance study of metabolites and intracellular pH in rabbit vascular smooth muscle. J Physiol. 1987 Dec;393:57–71. doi: 10.1113/jphysiol.1987.sp016810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vogel H. J., Lilja H., Hellstrand P. Phosphorus-31 NMR studies of smooth muscle from guinea-pig taenia coli. Biosci Rep. 1983 Sep;3(9):863–870. doi: 10.1007/BF01133785. [DOI] [PubMed] [Google Scholar]
  28. White R. E., Hartzell H. C. Magnesium ions in cardiac function. Regulator of ion channels and second messengers. Biochem Pharmacol. 1989 Mar 15;38(6):859–867. doi: 10.1016/0006-2952(89)90272-4. [DOI] [PubMed] [Google Scholar]
  29. Wray S. Smooth muscle intracellular pH: measurement, regulation, and function. Am J Physiol. 1988 Feb;254(2 Pt 1):C213–C225. doi: 10.1152/ajpcell.1988.254.2.C213. [DOI] [PubMed] [Google Scholar]
  30. Wu S. T., Pieper G. M., Salhany J. M., Eliot R. S. Measurement of free magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 nuclear magnetic resonance and multiequilibria analysis. Biochemistry. 1981 Dec 22;20(26):7399–7403. doi: 10.1021/bi00529a012. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES