Abstract
1. Isolated coiled reabsorptive sweat ducts from normal subjects and patients with cystic fibrosis (CF) were cultured in vitro. Cells were harvested and plated onto permeable supports to form confluent cell sheets. The Ussing chamber technique was used to study pharmacological regulation of the transepithelial ion transport in these membranes. 2. Addition of a stable cyclic AMP analogue, 8-Br-cyclic AMP, to normal cell cultures resulted in a decrease of the transepithelial potential difference (PD). 3. Forskolin exposure resulted in a similar PD decrease, which was augmented by the phosphodiesterase inhibitor, isobutylmethylxanthine (IBMX). 4. Exposure to isoprenaline, prostaglandin E2 (PGE2), and phenylephrine resulted in a response mimicking the forskolin-induced response, that was also amplified by IBMX. 5. Pre-incubation with cholera toxin abolished the isoprenaline response and reduced the control resistance. 6. Propranolol abolished the responses induced by isoprenaline and phenylephrine, whereas phentolamine had no effect. PGE2-induced responses were inert to both types of blockers. 7. Indomethazine addition to an unstimulated membrane resulted in a weak PD increase, i.e. a response opposite to that induced by isoprenaline. 8. IBMX addition to an unstimulated membrane resulted in a weak isoprenaline-like response. When the cells were pre-treated with indomethazine this IBMX response was absent. 9. Unidirectional Cl- isotope flux studies demonstrated a large increase of net Cl- reabsorption in response to isoprenaline and PGE2. 10. Mannitol isotope flux studies revealed that the paracellular permeability was unaffected by isoprenaline exposure. 11. Membranes derived from CF patients did not respond similarly to any of these agents. However, a weak spike, occasionally followed by a gradual increase of the short-circuit current (Iscc), was observed in both normal subjects and CF patients. 12. It is concluded that the primary effect on ion transport of factors increasing the cyclic AMP in normal cultured sweat duct cells is an activation of a transcellular Cl- permeability. This effect was missing in cells derived from CF patients.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barthelson R., Widdicombe J. Cyclic adenosine monophosphate-dependent kinase in cystic fibrosis tracheal epithelium. J Clin Invest. 1987 Dec;80(6):1799–1802. doi: 10.1172/JCI113274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berschneider H. M., Knowles M. R., Azizkhan R. G., Boucher R. C., Tobey N. A., Orlando R. C., Powell D. W. Altered intestinal chloride transport in cystic fibrosis. FASEB J. 1988 Jul;2(10):2625–2629. doi: 10.1096/fasebj.2.10.2838365. [DOI] [PubMed] [Google Scholar]
- Bijman J., Englert H. C., Lang H. J., Greger R., Frömter E. Characterization of human sweat duct chloride conductance by chloride channel blockers. Pflugers Arch. 1987 May;408(5):511–514. doi: 10.1007/BF00585077. [DOI] [PubMed] [Google Scholar]
- Bijman J., Quinton P. Permeability properties of cell membranes and tight junctions of normal and cystic fibrosis sweat ducts. Pflugers Arch. 1987 May;408(5):505–510. doi: 10.1007/BF00585076. [DOI] [PubMed] [Google Scholar]
- Bilezikian J. P., Loeb J. N. The influence of hyperthyroidism and hypothyroidism on alpha- and beta-adrenergic receptor systems and adrenergic responsiveness. Endocr Rev. 1983 Fall;4(4):378–388. doi: 10.1210/edrv-4-4-378. [DOI] [PubMed] [Google Scholar]
- Brayden D. J., Cuthbert A. W., Lee C. M. Human eccrine sweat gland epithelial cultures express ductal characteristics. J Physiol. 1988 Nov;405:657–675. doi: 10.1113/jphysiol.1988.sp017354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggman J. V., Bank H. L., Bigelow J. B., Graves J. S., Spicer S. S. Structure of the tight junctions of the human eccrine sweat gland. Am J Anat. 1981 Dec;162(4):357–368. doi: 10.1002/aja.1001620406. [DOI] [PubMed] [Google Scholar]
- Cassel D., Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3307–3311. doi: 10.1073/pnas.74.8.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collie G., Buchwald M., Harper P., Riordan J. R. Culture of sweat gland epithelial cells from normal individuals and patients with cystic fibrosis. In Vitro Cell Dev Biol. 1985 Oct;21(10):597–602. doi: 10.1007/BF02620892. [DOI] [PubMed] [Google Scholar]
- Davies A. O., De Lean A., Lefkowitz R. J. Myocardial beta-adrenergic receptors from adrenalectomized rats: impaired formation of high-affinity agonist-receptor complexes. Endocrinology. 1981 Feb;108(2):720–722. doi: 10.1210/endo-108-2-720. [DOI] [PubMed] [Google Scholar]
- Davis P. B., Shelhamer J. R., Kaliner M. Abnormal adrenergic and cholinergic sensitivity in cystic fibrosis. N Engl J Med. 1980 Jun 26;302(26):1453–1456. doi: 10.1056/NEJM198006263022605. [DOI] [PubMed] [Google Scholar]
- Doughney C., Pedersen P. S., McPherson M. A., Dormer R. L. Formation of inositol polyphosphates in cultured human sweat duct cells in response to cholinergic stimulation. Biochim Biophys Acta. 1989 Mar 6;1010(3):352–356. doi: 10.1016/0167-4889(89)90061-x. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
- Hadcock J. R., Malbon C. C. Regulation of beta-adrenergic receptors by "permissive" hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8415–8419. doi: 10.1073/pnas.85.22.8415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazeki O., Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem. 1981 Mar 25;256(6):2856–2862. [PubMed] [Google Scholar]
- Itoh H., Okajima F., Ui M. Conversion of adrenergic mechanism from an alpha- to a beta-type during primary culture of rat hepatocytes. Accompanying decreases in the function of the inhibitory guanine nucleotide regulatory component of adenylate cyclase identified as the substrate of islet-activating protein. J Biol Chem. 1984 Dec 25;259(24):15464–15473. [PubMed] [Google Scholar]
- Jones C. J., Bell C. L., Quinton P. M. Different physiological signatures of sweat gland secretory and duct cells in culture. Am J Physiol. 1988 Jul;255(1 Pt 1):C102–C111. doi: 10.1152/ajpcell.1988.255.1.C102. [DOI] [PubMed] [Google Scholar]
- Lang M. A., Muller J., Preston A. S., Handler J. S. Complete response to vasopressin requires epithelial organization in A6 cells in culture. Am J Physiol. 1986 Jan;250(1 Pt 1):C138–C145. doi: 10.1152/ajpcell.1986.250.1.C138. [DOI] [PubMed] [Google Scholar]
- Lee C. M., Carpenter F., Coaker T., Kealey T. The primary culture of epithelia from the secretory coil and collecting duct of normal human and cystic fibrotic eccrine sweat glands. J Cell Sci. 1986 Jul;83:103–118. doi: 10.1242/jcs.83.1.103. [DOI] [PubMed] [Google Scholar]
- Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
- Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
- Lorentz W. B., Jr The effect of cyclic AMP and dibutyryl cyclic AMP on the permeability characteristics of the renal tubule. J Clin Invest. 1974 May;53(5):1250–1257. doi: 10.1172/JCI107671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreto M., Planas J. M., Naftalin R. J. Effects of secretagogues on the K+ permeability of mucosal and serosal borders of rabbit colonic mucosa. Biochim Biophys Acta. 1981 Nov 6;648(2):215–224. doi: 10.1016/0005-2736(81)90037-7. [DOI] [PubMed] [Google Scholar]
- Pedersen P. S. Cellular mechanism of cholinergic action in epithelial cell cultures derived from the human reabsorptive sweat duct. Prog Clin Biol Res. 1987;254:151–165. [PubMed] [Google Scholar]
- Pedersen P. S. Human sweat duct cells in primary culture. Basic bioelectric properties of cultures derived from normals and patients with cystic fibrosis. In Vitro Cell Dev Biol. 1989 Apr;25(4):342–352. doi: 10.1007/BF02624597. [DOI] [PubMed] [Google Scholar]
- Preston A. S., Muller J., Handler J. S. Dexamethasone accelerates differentiation of A6 epithelia and increases response to vasopressin. Am J Physiol. 1988 Nov;255(5 Pt 1):C661–C666. doi: 10.1152/ajpcell.1988.255.5.C661. [DOI] [PubMed] [Google Scholar]
- Quinton P. M., Bijman J. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med. 1983 May 19;308(20):1185–1189. doi: 10.1056/NEJM198305193082002. [DOI] [PubMed] [Google Scholar]
- Quinton P. M. Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands. Pflugers Arch. 1981 Oct;391(4):309–313. doi: 10.1007/BF00581513. [DOI] [PubMed] [Google Scholar]
- Riordan J., Burns J., Tsui L. C., Reddy M. M., Quinton P., Buchwald M. Utilization of cultured epithelial cells from the sweat gland in studies of the CF defect. Prog Clin Biol Res. 1987;254:59–71. [PubMed] [Google Scholar]
- Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
- SCHWARTZ I. L., THAYSEN J. H. Excretion of sodium and potassium in human sweat. J Clin Invest. 1956 Jan;35(1):114–120. doi: 10.1172/JCI103245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Sato F. Cholinergic potentiation of isoproterenol-induced cAMP level in sweat gland. Am J Physiol. 1983 Sep;245(3):C189–C195. doi: 10.1152/ajpcell.1983.245.3.C189. [DOI] [PubMed] [Google Scholar]
- Sato K., Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984 Jun;73(6):1763–1771. doi: 10.1172/JCI111385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz I. J. Micropuncture studies of the sweat formation in cystic fibrosis patients. J Clin Invest. 1969 Aug;48(8):1470–1477. doi: 10.1172/JCI106113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol. 1984;77(3):187–199. doi: 10.1007/BF01870568. [DOI] [PubMed] [Google Scholar]
- Welsh M. J., Liedtke C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. 1986 Jul 31-Aug 6Nature. 322(6078):467–470. doi: 10.1038/322467a0. [DOI] [PubMed] [Google Scholar]
- Widdicombe J. H. Cystic fibrosis and beta-adrenergic response of airway epithelial cell cultures. Am J Physiol. 1986 Oct;251(4 Pt 2):R818–R822. doi: 10.1152/ajpregu.1986.251.4.R818. [DOI] [PubMed] [Google Scholar]
- Yankaskas J. R., Knowles M. R., Gatzy J. T., Boucher R. C. Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture. Lancet. 1985 Apr 27;1(8435):954–956. doi: 10.1016/s0140-6736(85)91728-3. [DOI] [PubMed] [Google Scholar]
