Abstract
1. The effects of reduction in renal blood flow (RBF) on urinary acidification and proximal tubule H+ ion secretion were studied after partial aortic clamping in rats. 2. Acute reduction of the renal perfusion pressure (from 109 +/- 3.88 to 77.4 +/- 1.05 mmHg) decreased both inulin and PAH (p-aminohippurate) clearances to about one-third of their control values. Absolute levels of urinary sodium excretion also decreased markedly, but fractional sodium excretion did not change significantly. 3. Urine pH and bicarbonate levels were not affected, but titratable acidity increased significantly from 0.12 +/- 0.011 to 0.25 +/- 0.042 muequiv min-1 ml-1 glomerular filtration rate (GFR). During aortic clamping, cortical PCO2 as determined by means of Severinghaus microelectrodes was reduced by a mean value of 7.0 +/- 1.5 mmHg. 4. Proximal tubule acidification kinetics were studied by stationary microperfusion techniques in which the time course of pH changes was monitored by pH microelectrodes. Steady-state pH fell from a mean control value of 6.77 +/- 0.03 to 6.65 +/- 0.02, and stationary bicarbonate concentrations from 4.70 +/- 0.27 to 2.84 +/- 0.18 mM. Acidification half-time decreased from 5.07 +/- 0.30 to 4.39 +/- 0.19 s, and net bicarbonate reabsorption increased from 1.63 +/- 0.14 to 1.99 +/- 0.12 nmol cm-2 s-1, these changes being statistically significant. 5. The experiments demonstrate that both overall acid excretion and proximal acid secretion are not compromised by a large decrease of RBF to about one-third of the control value; titratable acid excretion and proximal net bicarbonate reabsorption were even moderately increased under these conditions.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amorena C., Fernandes D. T., Malnic G. Factors affecting proximal tubular acidification of non-bicarbonate buffer in the rat. J Physiol. 1984 Jul;352:31–48. doi: 10.1113/jphysiol.1984.sp015276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arendshorst W. J., Finn W. F., Gottschalk C. W. Autoregulation of blood flow in the rat kidney. Am J Physiol. 1975 Jan;228(1):127–133. doi: 10.1152/ajplegacy.1975.228.1.127. [DOI] [PubMed] [Google Scholar]
- Brenner B. M., Troy J. L., Daugharty T. M., MacInnes R. M. Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat. J Clin Invest. 1973 Jan;52(1):190–197. doi: 10.1172/JCI107164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buentig W. E., Earley L. E. Demonstration of independent roles of proximal tubular reabsorption and intratubular load in the phenomenon of glomerulotubular balance during aortic constriction in the rat. J Clin Invest. 1971 Jan;50(1):77–89. doi: 10.1172/JCI106486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke T. J., Arnold P. E., Schrier R. W. Prevention of ischemic acute renal failure with impermeant solutes. Am J Physiol. 1983 Jun;244(6):F646–F649. doi: 10.1152/ajprenal.1983.244.6.F646. [DOI] [PubMed] [Google Scholar]
- Damasco M. C., Malnic G. Effect of corticosteroids on proximal tubular acidification in the rat. Miner Electrolyte Metab. 1987;13(1):26–32. [PubMed] [Google Scholar]
- Dresser T. P., Lynch R. E., Schneider E. G., Knox F. G. Effect of increases in blood pressure on pressure and reabsorption in the proximal tubule. Am J Physiol. 1971 Feb;220(2):444–447. doi: 10.1152/ajplegacy.1971.220.2.444. [DOI] [PubMed] [Google Scholar]
- FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
- Falchuk K. H., Brenner B. M., Tadokoro M., Berliner R. W. Oncotic and hydrostatic pressures in peritubular capillaries and fluid reabsorption by proximal tubule. Am J Physiol. 1971 May;220(5):1427–1433. doi: 10.1152/ajplegacy.1971.220.5.1427. [DOI] [PubMed] [Google Scholar]
- Fried T. A., Hishida A., Barnes J. L., Stein J. H. Ischemic acute renal failure in the rat: protective effect of uninephrectomy. Am J Physiol. 1984 Oct;247(4 Pt 2):F568–F574. doi: 10.1152/ajprenal.1984.247.4.F568. [DOI] [PubMed] [Google Scholar]
- Holzgreve H., Schrier R. W. Variation of proximal tubular reabsorptive capacity by volume expansion and aortic constriction during constancy of peritubular capillary protein concentration in rat kidney. Pflugers Arch. 1975 Apr 9;356(1):73–86. doi: 10.1007/BF00583522. [DOI] [PubMed] [Google Scholar]
- Ichikawa I., Brenner B. M. Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat. J Clin Invest. 1980 May;65(5):1192–1201. doi: 10.1172/JCI109774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston P. A., Perrin N. S., Bernard D. B., Levinsky N. G. Control of rat renal vascular resistance at reduced perfusion pressure. Circ Res. 1981 May;48(5):734–739. doi: 10.1161/01.res.48.5.734. [DOI] [PubMed] [Google Scholar]
- Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
- Kon V., Hughes M. L., Ichikawa I. Blood flow dependence of postglomerular fluid transfer and glomerulotubular balance. J Clin Invest. 1983 Nov;72(5):1716–1728. doi: 10.1172/JCI111131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopes A. G., de Mello-Aires M., Malnic G. Behavior of the antimony microelectrode in different buffer solutions. Braz J Med Biol Res. 1981 Apr;14(1):29–36. [PubMed] [Google Scholar]
- Lynch R. E., Schneider E. G., Willis L. R., Knox F. G. Absence of mineralocorticoid-dependent sodium reabsorption in dog proximal tubule. Am J Physiol. 1972 Jul;223(1):40–45. doi: 10.1152/ajplegacy.1972.223.1.40. [DOI] [PubMed] [Google Scholar]
- Malnic G., de Mello-Aires M. Kinetic study of bicarbonate reabsorption in proximal tubule of the rat. Am J Physiol. 1971 Jun;220(6):1759–1767. doi: 10.1152/ajplegacy.1971.220.6.1759. [DOI] [PubMed] [Google Scholar]
- Marver D., Kokko J. P. Renal target sites and the mechanism of action of aldosterone. Miner Electrolyte Metab. 1983 Jan-Feb;9(1):1–18. [PubMed] [Google Scholar]
- McNay J. L., Abe Y. Pressure-dependent heterogeneity of renal cortical blood flow in dogs. Circ Res. 1970 Oct;27(4):571–587. doi: 10.1161/01.res.27.4.571. [DOI] [PubMed] [Google Scholar]
- Mellander S., Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968 Sep;20(3):117–196. [PubMed] [Google Scholar]
- Morgan T. A microperfusion study of some factors controlling sodium absorption and glomerular filtration in the nephron of the rat. Circ Res. 1970 Oct;27(Suppl):245+–245+. [PubMed] [Google Scholar]
- Pucacco L. R., Carter N. W. An improved pCO2 microelectrode. Anal Biochem. 1978 Oct 1;90(1):427–434. doi: 10.1016/0003-2697(78)90047-7. [DOI] [PubMed] [Google Scholar]
- Quinn M. D., Marsh D. J. Peritubular capillary control of proximal tubule reabsorption in the rat. Am J Physiol. 1979 May;236(5):F478–F487. doi: 10.1152/ajprenal.1979.236.5.F478. [DOI] [PubMed] [Google Scholar]
- Rebouças N. A., Fernandes D. T., Elias M. M., de Mello-Aires M., Malnic G. Proximal tubular HCO3-, H+ and fluid transport during maleate-induced acidification defect. Pflugers Arch. 1984 Jul;401(3):266–271. doi: 10.1007/BF00582594. [DOI] [PubMed] [Google Scholar]
- Rubio C. R., de Mello G. B., Mangili O. C., Malnic G. H+ ion secretion in proximal tubule of low-Co2/HCO-3 perfused isolated rat kidney. Pflugers Arch. 1982 Mar;393(1):63–70. doi: 10.1007/BF00582393. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sohtell M., Karlmark B. In vivo micropuncture PCO2 measurements. Pflugers Arch. 1976 May 12;363(2):179–180. doi: 10.1007/BF01062288. [DOI] [PubMed] [Google Scholar]
- Stein J. H., Osgood R. W., Boonjarern S., Cox J. W., Ferris T. F. Segmental sodium reabsorption in rats with mild and severe volume depletion. Am J Physiol. 1974 Aug;227(2):351–359. doi: 10.1152/ajplegacy.1974.227.2.351. [DOI] [PubMed] [Google Scholar]
- Tam S. C., Goldstein M. B., Richardson R. M., Robson W. L., Stinebaugh B. J., Halperin M. L. Effect of extracellular fluid volume contraction on distal-nephron hydrogen ion secretion in vivo. J Lab Clin Med. 1980 Sep;96(3):442–449. [PubMed] [Google Scholar]
- Vieira F. L., Malnic G. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am J Physiol. 1968 Apr;214(4):710–718. doi: 10.1152/ajplegacy.1968.214.4.710. [DOI] [PubMed] [Google Scholar]
- Weiner M. W., Weinman E. J., Kashgarian M., Hayslett J. P. Accelerated reabsorption in the proximal tubule produced by volume depletion. J Clin Invest. 1971 Jul;50(7):1379–1385. doi: 10.1172/JCI106620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiederholt M., Stolte H., Brecht J. P., Hierholzer K. Mikropunktionsuntersuchungen über den Einfluss von Aldosteron, Cortison und Dexamethason auf die renale Natriumresorption adrenalektomierter Ratten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(4):316–333. [PubMed] [Google Scholar]