Abstract
1. Zinc is taken up into human red cells by two mechanisms that depend upon the presence of anions. One of these requires bicarbonate ions, is inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and appears to be catalysed by the anion exchanger. The second occurs in the presence of thiocyanate or salicylate ions and may represent transport of a neutral complex with Zn2+. 2. The initial rate of Zn2+ uptake via the anion exchanger is 64 +/- 13 mumol (10(13) cells x h)-1 microM-1 external Zn2+, in the presence of 5 mM-bicarbonate at pH 7.4 and 37 degrees C (+/- S.D.). This is about 1/250 of the corresponding rate of Pb2+ uptake by the anion exchanger. 3. The variation of transport with Zn2+ concentration, HCO3- concentration and pH suggests that the transported species may be ZnCO3Cl- or Zn(HCO3)Cl.OH-. 4. Zinc efflux could not be observed by either of the above routes. This observation suggests that the intracellular free Zn2+ concentration is below 3 nM.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker B. F., Duhm J. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions. J Physiol. 1978 Sep;282:149–168. doi: 10.1113/jphysiol.1978.sp012454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürgin H., Schatzmann H. J. The relation between net calcium, alkali cation and chloride movements in red cells exposed to salicylate. J Physiol. 1979 Feb;287:15–32. doi: 10.1113/jphysiol.1979.sp012642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Failla M. L., Cousins R. J. Zinc uptake by isolated rat liver parenchymal cells. Biochim Biophys Acta. 1978 Feb 1;538(3):435–444. doi: 10.1016/0304-4165(78)90405-1. [DOI] [PubMed] [Google Scholar]
- Foote J. W., Delves H. T. Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol. 1984 Sep;37(9):1050–1054. doi: 10.1136/jcp.37.9.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Acta Physiol Scand. 1967 Oct-Nov;71(2):168–185. doi: 10.1111/j.1748-1716.1967.tb03723.x. [DOI] [PubMed] [Google Scholar]
- Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruckeberg W. C., Brewer G. J. The mechanism and control of human erythrocyte zinc uptake. Med Biol. 1978 Feb;56(1):5–10. [PubMed] [Google Scholar]
- Labotka R. J., Omachi A. The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy. J Biol Chem. 1988 Jan 25;263(3):1166–1173. [PubMed] [Google Scholar]
- Magneson G. R., Puvathingal J. M., Ray W. J., Jr The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem. 1987 Aug 15;262(23):11140–11148. [PubMed] [Google Scholar]
- Ohno H., Doi R., Yamamura K., Yamashita K., Iizuka S., Taniguchi N. A study of zinc distribution in erythrocytes of normal humans. Blut. 1985 Feb;50(2):113–116. doi: 10.1007/BF00321175. [DOI] [PubMed] [Google Scholar]
- Pattison S. E., Cousins R. J. Zinc uptake and metabolism by hepatocytes. Fed Proc. 1986 Nov;45(12):2805–2809. [PubMed] [Google Scholar]
- Peck E. J., Jr, Ray W. J., Jr Metal complexes of phosphoglucomutase in vivo. Alterations induced by insulin. J Biol Chem. 1971 Feb 25;246(4):1160–1167. [PubMed] [Google Scholar]
- Simons T. J. Passive transport and binding of lead by human red blood cells. J Physiol. 1986 Sep;378:267–286. doi: 10.1113/jphysiol.1986.sp016219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons T. J. The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol. 1986 Sep;378:287–312. doi: 10.1113/jphysiol.1986.sp016220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stacey N. H., Klaassen C. D. Zinc uptake by isolated rat hepatocytes. Biochim Biophys Acta. 1981 Feb 6;640(3):693–697. doi: 10.1016/0005-2736(81)90099-7. [DOI] [PubMed] [Google Scholar]
- Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
- Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieth J. O. Effects of monovalent cations on sodium permeability of human red cells. Acta Physiol Scand. 1970 May;79(1):76–87. doi: 10.1111/j.1748-1716.1970.tb04703.x. [DOI] [PubMed] [Google Scholar]
- Wieth J. O. Paradoxical temperature dependence of sodium and potassium fluxes in human red cells. J Physiol. 1970 May;207(3):563–580. doi: 10.1113/jphysiol.1970.sp009081. [DOI] [PMC free article] [PubMed] [Google Scholar]
