Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Feb;421:645–662. doi: 10.1113/jphysiol.1990.sp017967

Effects of glycine and GABA on isolated bipolar cells of the mouse retina.

S Suzuki 1, M Tachibana 1, A Kaneko 1
PMCID: PMC1190107  PMID: 1693403

Abstract

1. Bipolar cells were enzymatically (papain) dissociated from the mouse retina. Responses to exogenously applied glycine and GABA were recorded using the whole-cell voltage clamp method (pipette solution contained 121 mM-Cl-). Both glycine and GABA evoked inward currents in cells voltage clamped at negative membrane voltages (e.g. -60 mV) and superfused with the control solution containing 146 mM-Cl-. 2. Polarities of both glycine- and GABA-induced currents reversed near 0 mV under our control conditions. The reversal potential depended on both external [( Cl-]o) and internal (intrapipette; [Cl-]p) Cl- concentrations, but on neither Na+ nor K+ concentration. The reversal potentials were very close to the calculated equilibrium potential for Cl- estimated by using the Nernst equation with various external and internal Cl- activities. 3. The sensitivity to both glycine and GABA was highest at the axon terminal bulb. 4. Glycine-induced responses were antagonized by 10 nM-strychnine (competitively and non-competitively), but by neither bicuculline nor picrotoxin. GABA-induced responses were antagonized by 30 microM-bicuculline (competitively) and 30 microM-picrotoxin (non-competitively), but not by 100 nM-strychnine. Muscimol was as effective as GABA. Baclofen evoked no response even at 100 microM and did not modulate voltage-dependent Ca2+ current. Pentobarbitone (10 microM) increased the sensitivity to GABA. These observations suggest that glycine and GABA worked on separate receptor molecules and that the receptors for GABA were GABAA type. 5. The present study suggests that glycine and GABA, both putative neurotransmitters of amacrine cells, mediate inhibition of bipolar cells in the mouse retina.

Full text

PDF
645

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chun M. H., Wässle H. GABA-like immunoreactivity in the cat retina: electron microscopy. J Comp Neurol. 1989 Jan 1;279(1):55–67. doi: 10.1002/cne.902790106. [DOI] [PubMed] [Google Scholar]
  3. Dacheux R. F., Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986 Feb;6(2):331–345. doi: 10.1523/JNEUROSCI.06-02-00331.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dowling J. E., Boycott B. B. Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci. 1966 Nov 15;166(1002):80–111. doi: 10.1098/rspb.1966.0086. [DOI] [PubMed] [Google Scholar]
  5. Famiglietti E. V., Jr, Kaneko A., Tachibana M. Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science. 1977 Dec 23;198(4323):1267–1269. doi: 10.1126/science.73223. [DOI] [PubMed] [Google Scholar]
  6. Famiglietti E. V., Jr, Kolb H. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science. 1976 Oct 8;194(4261):193–195. doi: 10.1126/science.959847. [DOI] [PubMed] [Google Scholar]
  7. Freed M. A., Nakamura Y., Sterling P. Four types of amacrine in the cat retina that accumulate GABA. J Comp Neurol. 1983 Sep 20;219(3):295–304. doi: 10.1002/cne.902190305. [DOI] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Kaneko A., Pinto L. H., Tachibana M. Transient calcium current of retinal bipolar cells of the mouse. J Physiol. 1989 Mar;410:613–629. doi: 10.1113/jphysiol.1989.sp017551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneko A., Tachibana M. Blocking effects of cobalt and related ions on the gamma-aminobutyric acid-induced current in turtle retinal cones. J Physiol. 1986 Apr;373:463–479. doi: 10.1113/jphysiol.1986.sp016058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaneko A., Tachibana M. Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J Physiol. 1986 Apr;373:443–461. doi: 10.1113/jphysiol.1986.sp016057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolb H., Nelson R., Mariani A. Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res. 1981;21(7):1081–1114. doi: 10.1016/0042-6989(81)90013-4. [DOI] [PubMed] [Google Scholar]
  13. Kondo H., Toyoda J. GABA and glycine effects on the bipolar cells of the carp retina. Vision Res. 1983;23(11):1259–1264. doi: 10.1016/0042-6989(83)90101-3. [DOI] [PubMed] [Google Scholar]
  14. Lipton S. A., Tauck D. L. Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina. J Physiol. 1987 Apr;385:361–391. doi: 10.1113/jphysiol.1987.sp016497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marc R. E., Lam D. M. Glycinergic pathways in the goldfish retina. J Neurosci. 1981 Feb;1(2):152–165. doi: 10.1523/JNEUROSCI.01-02-00152.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marc R. E. Spatial organization of neurochemically classified interneurons of the goldfish retina-I. Local patterns. Vision Res. 1982;22(5):589–608. doi: 10.1016/0042-6989(82)90117-1. [DOI] [PubMed] [Google Scholar]
  17. Marc R. E., Stell W. K., Bok D., Lam D. M. GABA-ergic pathways in the goldfish retina. J Comp Neurol. 1978 Nov 15;182(2):221–244. doi: 10.1002/cne.901820204. [DOI] [PubMed] [Google Scholar]
  18. Masland R. H., Mills J. W., Cassidy C. The functions of acetylcholine in the rabbit retina. Proc R Soc Lond B Biol Sci. 1984 Nov 22;223(1230):121–139. doi: 10.1098/rspb.1984.0086. [DOI] [PubMed] [Google Scholar]
  19. Massey S. C., Redburn D. A. Transmitter circuits in the vertebrate retina. Prog Neurobiol. 1987;28(1):55–96. doi: 10.1016/0301-0082(87)90005-0. [DOI] [PubMed] [Google Scholar]
  20. McGuire B. A., Stevens J. K., Sterling P. Microcircuitry of bipolar cells in cat retina. J Neurosci. 1984 Dec;4(12):2920–2938. doi: 10.1523/JNEUROSCI.04-12-02920.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Müller F., Wässle H., Voigt T. Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol. 1988 Jun;59(6):1657–1672. doi: 10.1152/jn.1988.59.6.1657. [DOI] [PubMed] [Google Scholar]
  22. Negishi K., Kato S., Teranishi T. Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett. 1988 Dec 5;94(3):247–252. doi: 10.1016/0304-3940(88)90025-0. [DOI] [PubMed] [Google Scholar]
  23. Nelson R., Kolb H. A17: a broad-field amacrine cell in the rod system of the cat retina. J Neurophysiol. 1985 Sep;54(3):592–614. doi: 10.1152/jn.1985.54.3.592. [DOI] [PubMed] [Google Scholar]
  24. Olsen R. W. GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem. 1981 Jul;37(1):1–13. doi: 10.1111/j.1471-4159.1981.tb05284.x. [DOI] [PubMed] [Google Scholar]
  25. Pourcho R. G., Goebel D. J. A combined Golgi and autoradiographic study of (3H)glycine-accumulating amacrine cells in the cat retina. J Comp Neurol. 1985 Mar 22;233(4):473–480. doi: 10.1002/cne.902330406. [DOI] [PubMed] [Google Scholar]
  26. Pourcho R. G., Goebel D. J. Neuronal subpopulations in cat retina which accumulate the GABA agonist, (3H)muscimol: a combined Golgi and autoradiographic study. J Comp Neurol. 1983 Sep 1;219(1):25–35. doi: 10.1002/cne.902190104. [DOI] [PubMed] [Google Scholar]
  27. Pourcho R. G., Goebel D. J. Visualization of endogenous glycine in cat retina: an immunocytochemical study with Fab fragments. J Neurosci. 1987 Apr;7(4):1189–1197. doi: 10.1523/JNEUROSCI.07-04-01189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tachibana M. Ionic currents of solitary horizontal cells isolated from goldfish retina. J Physiol. 1983 Dec;345:329–351. doi: 10.1113/jphysiol.1983.sp014981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tachibana M., Kaneko A. Retinal bipolar cells receive negative feedback input from GABAergic amacrine cells. Vis Neurosci. 1988;1(3):297–305. doi: 10.1017/s0952523800001954. [DOI] [PubMed] [Google Scholar]
  30. Tachibana M., Kaneko A. gamma-Aminobutyric acid acts at axon terminals of turtle photoreceptors: difference in sensitivity among cell types. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7961–7964. doi: 10.1073/pnas.81.24.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tachibana M., Kaneko A. gamma-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3501–3505. doi: 10.1073/pnas.84.10.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wässle H., Chun M. H. GABA-like immunoreactivity in the cat retina: light microscopy. J Comp Neurol. 1989 Jan 1;279(1):43–54. doi: 10.1002/cne.902790105. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES