Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Mar;422:83–101. doi: 10.1113/jphysiol.1990.sp017974

Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.

Z W Zhang 1, P Feltz 1
PMCID: PMC1190122  PMID: 1693685

Abstract

1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed.

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ascher P. Inhibitory and excitatory effects of dopamine on Aplysia neurones. J Physiol. 1972 Aug;225(1):173–209. doi: 10.1113/jphysiol.1972.sp009933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ascher P., Large W. A., Rang H. P. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol. 1979 Oct;295:139–170. doi: 10.1113/jphysiol.1979.sp012958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballivet M., Nef P., Couturier S., Rungger D., Bader C. R., Bertrand D., Cooper E. Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuron. 1988 Nov;1(9):847–852. doi: 10.1016/0896-6273(88)90132-8. [DOI] [PubMed] [Google Scholar]
  5. Berg D. K., Boyd R. T., Halvorsen S. W., Higgins L. S., Jacob M. H., Margiotta J. F. Regulating the number and function of neuronal acetylcholine receptors. Trends Neurosci. 1989 Jan;12(1):16–21. doi: 10.1016/0166-2236(89)90151-3. [DOI] [PubMed] [Google Scholar]
  6. Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7763–7767. doi: 10.1073/pnas.84.21.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bregestovski P. D., Miledi R., Parker I. Calcium conductance of acetylcholine-induced endplate channels. Nature. 1979 Jun 14;279(5714):638–639. doi: 10.1038/279638a0. [DOI] [PubMed] [Google Scholar]
  8. Brehm P., Kullberg R. Acetylcholine receptor channels on adult mouse skeletal muscle are functionally identical in synaptic and nonsynaptic membrane. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2550–2554. doi: 10.1073/pnas.84.8.2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carmeliet P., Baes M., Denef C. The glucocorticoid hormone dexamethasone reverses the growth hormone-releasing properties of the cholinomimetic carbachol. Endocrinology. 1989 May;124(5):2625–2634. doi: 10.1210/endo-124-5-2625. [DOI] [PubMed] [Google Scholar]
  10. Carmeliet P., Denef C. Synthesis and release of acetylcholine by normal and tumoral pituitary corticotrophs. Endocrinology. 1989 May;124(5):2218–2227. doi: 10.1210/endo-124-5-2218. [DOI] [PubMed] [Google Scholar]
  11. Changeux J. P. The acetylcholine receptor: its molecular biology and biotechnological prospects. Bioessays. 1989 Feb-Mar;10(2-3):48–54. doi: 10.1002/bies.950100204. [DOI] [PubMed] [Google Scholar]
  12. Cull-Candy S. G., Mathie A. Ion channels activated by acetylcholine and gamma-aminobutyric acid in freshly dissociated sympathetic neurones of the rat. Neurosci Lett. 1986 May 23;66(3):275–280. doi: 10.1016/0304-3940(86)90031-5. [DOI] [PubMed] [Google Scholar]
  13. Dani J. A., Eisenman G. Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure. J Gen Physiol. 1987 Jun;89(6):959–983. doi: 10.1085/jgp.89.6.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davis M. D., Haas H. L., Lichtensteiger W. The hypothalamohypophyseal system in vitro: electrophysiology of the pars intermedia and evidence for both excitatory and inhibitory inputs. Brain Res. 1985 May 13;334(1):97–104. doi: 10.1016/0006-8993(85)90571-2. [DOI] [PubMed] [Google Scholar]
  15. Davis M. D. The hypothalamo-hypophyseal rat explant in vitro: endocrinological studies of the pars intermedia dopaminergic neural input. J Physiol. 1986 Jan;370:381–393. doi: 10.1113/jphysiol.1986.sp015940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Demeneix B. A., Taleb O., Loeffler J. P., Feltz P. GABAA and GABAB receptors on porcine pars intermedia cells in primary culture: functional role in modulating peptide release. Neuroscience. 1986 Apr;17(4):1275–1285. doi: 10.1016/0306-4522(86)90094-1. [DOI] [PubMed] [Google Scholar]
  17. Derkach V. A., North R. A., Selyanko A. A., Skok V. I. Single channels activated by acetylcholine in rat superior cervical ganglion. J Physiol. 1987 Jul;388:141–151. doi: 10.1113/jphysiol.1987.sp016606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Douglas W. W., Taraskevich P. S. Slowing effects of dopamine and calcium-channel blockers on frequency of sodium spikes in rat pars intermedia cells. J Physiol. 1982 May;326:201–211. doi: 10.1113/jphysiol.1982.sp014186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Giorguieff M. F., Le Floc'h M. L., Glowinski J., Besson M. J. Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J Pharmacol Exp Ther. 1977 Mar;200(3):535–544. [PubMed] [Google Scholar]
  20. Gregg C. M. The compartmentalized hypothalamo-neurohypophysial system: evidence for a neurohypophysial action of acetylcholine on vasopressin release. Neuroendocrinology. 1985 May;40(5):423–429. doi: 10.1159/000124108. [DOI] [PubMed] [Google Scholar]
  21. Guillery R. W., LaMantia A. S., Robson J. A., Huang K. The influence of retinal afferents upon the development of layers in the dorsal lateral geniculate nucleus of mustelids. J Neurosci. 1985 May;5(5):1370–1379. doi: 10.1523/JNEUROSCI.05-05-01370.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hadley M. E., Hruby V. J., Bower A. Cellular mechanisms controlling melanophore stimulating hormone (MSH) release. Gen Comp Endocrinol. 1975 May;26(1):24–35. doi: 10.1016/0016-6480(75)90212-9. [DOI] [PubMed] [Google Scholar]
  23. Henderson L. P., Lechleiter J. D., Brehm P. Single channel properties of newly synthesized acetylcholine receptors following denervation of mammalian skeletal muscle. J Gen Physiol. 1987 Jun;89(6):999–1014. doi: 10.1085/jgp.89.6.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hirano T., Kidokoro Y., Ohmori H. Acetylcholine dose-response relation and the effect of cesium ions in the rat adrenal chromaffin cell under voltage clamp. Pflugers Arch. 1987 Apr;408(4):401–407. doi: 10.1007/BF00581136. [DOI] [PubMed] [Google Scholar]
  25. Imoto K., Methfessel C., Sakmann B., Mishina M., Mori Y., Konno T., Fukuda K., Kurasaki M., Bujo H., Fujita Y. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature. 1986 Dec 18;324(6098):670–674. doi: 10.1038/324670a0. [DOI] [PubMed] [Google Scholar]
  26. Kehl S. J., Hughes D., McBurney R. N. A patch clamp study of gamma-aminobutyric acid (GABA)-induced macroscopic currents in rat melanotrophs in cell culture. Br J Pharmacol. 1987 Nov;92(3):573–585. doi: 10.1111/j.1476-5381.1987.tb11359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krishtal O. A., Pidoplichko V. I. A receptor for protons in the nerve cell membrane. Neuroscience. 1980;5(12):2325–2327. doi: 10.1016/0306-4522(80)90149-9. [DOI] [PubMed] [Google Scholar]
  28. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loeffler J. P., Kley N., Louis J. C., Demeneix B. A. Ca2+ regulates hormone secretion and proopiomelanocortin gene expression in melanotrope cells via the calmodulin and the protein kinase C pathways. J Neurochem. 1989 Apr;52(4):1279–1283. doi: 10.1111/j.1471-4159.1989.tb01876.x. [DOI] [PubMed] [Google Scholar]
  30. Loring R. H., Sah D. W., Landis S. C., Zigmond R. E. The ultrastructural distribution of putative nicotinic receptors on cultured neurons from the rat superior cervical ganglion. Neuroscience. 1988 Mar;24(3):1071–1080. doi: 10.1016/0306-4522(88)90088-7. [DOI] [PubMed] [Google Scholar]
  31. Loring R. H., Zigmond R. E. Characterization of neuronal nicotinic receptors by snake venom neurotoxins. Trends Neurosci. 1988 Feb;11(2):73–78. doi: 10.1016/0166-2236(88)90168-3. [DOI] [PubMed] [Google Scholar]
  32. Lorković H. Permeability to Ca2+ of the acetylcholine receptor channel of denervated mouse muscles in the presence of Na+ and of some other cations. Pflugers Arch. 1988 Jul;412(1-2):211–215. doi: 10.1007/BF00583752. [DOI] [PubMed] [Google Scholar]
  33. MacVicar B. A., Pittman Q. J. Novel synaptic responses mediated by dopamine and gamma-aminobutyric acid in neuroendocrine cells of the intermediate pituitary. Neurosci Lett. 1986 Feb 14;64(1):35–40. doi: 10.1016/0304-3940(86)90659-2. [DOI] [PubMed] [Google Scholar]
  34. Marchais D., Marty A. Interaction of permeant ions with channels activated by acetylcholine in Aplysia neurones. J Physiol. 1979 Dec;297(0):9–45. doi: 10.1113/jphysiol.1979.sp013025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Margiotta J. F., Berg D. K., Dionne V. E. Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8155–8159. doi: 10.1073/pnas.84.22.8155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mathie A., Cull-Candy S. G., Colquhoun D. Single-channel and whole-cell currents evoked by acetylcholine in dissociated sympathetic neurons of the rat. Proc R Soc Lond B Biol Sci. 1987 Nov 23;232(1267):239–248. doi: 10.1098/rspb.1987.0072. [DOI] [PubMed] [Google Scholar]
  37. McBurney R. N., Kehl S. J. Electrophysiology of neurosecretory cells from the pituitary intermediate lobe. J Exp Biol. 1988 Sep;139:317–328. doi: 10.1242/jeb.139.1.317. [DOI] [PubMed] [Google Scholar]
  38. Rang H. P., Colquhoun D., Rang H. P. The action of ganglionic blocking drugs on the synaptic responses of rat submandibular ganglion cells. Br J Pharmacol. 1982 Jan;75(1):151–168. doi: 10.1111/j.1476-5381.1982.tb08768.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rang H. P. The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells. J Physiol. 1981 Feb;311:23–55. doi: 10.1113/jphysiol.1981.sp013571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rao Z. R., Yamano M., Wanaka A., Tatehata T., Shiosaka S., Tohyama M. Distribution of cholinergic neurons and fibers in the hypothalamus of the rat using choline acetyltransferase as a marker. Neuroscience. 1987 Mar;20(3):923–934. doi: 10.1016/0306-4522(87)90253-3. [DOI] [PubMed] [Google Scholar]
  41. Rodriguez-Sierra J. F., Morley B. J. Evidence that cell bodies in the arcuate nucleus of the hypothalamus are not cholinergic. Neuroendocrinology. 1985 Nov;41(5):427–431. doi: 10.1159/000124213. [DOI] [PubMed] [Google Scholar]
  42. Rosa M., Gallardo G. P., Cannata M. A., Tramezzani J. H. Choline acetyltrasferase activity in the neurointermediate lobe of the rat pituitary. J Neural Transm. 1977;41(1):93–96. doi: 10.1007/BF01252967. [DOI] [PubMed] [Google Scholar]
  43. Sakmann B., Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 1984;46:455–472. doi: 10.1146/annurev.ph.46.030184.002323. [DOI] [PubMed] [Google Scholar]
  44. Sales N., Martres M. P., Bouthenet M. L., Schwartz J. C. Ontogeny of dopaminergic D-2 receptors in the rat nervous system: characterization and detailed autoradiographic mapping with [125I]iodosulpride. Neuroscience. 1989;28(3):673–700. doi: 10.1016/0306-4522(89)90014-6. [DOI] [PubMed] [Google Scholar]
  45. Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
  46. Schulz D. W., Zigmond R. E. Neuronal bungarotoxin blocks the nicotinic stimulation of endogenous dopamine release from rat striatum. Neurosci Lett. 1989 Apr 10;98(3):310–316. doi: 10.1016/0304-3940(89)90420-5. [DOI] [PubMed] [Google Scholar]
  47. Steinbach J. H., Ifune C. How many kinds of nicotinic acetylcholine receptor are there? Trends Neurosci. 1989 Jan;12(1):3–6. doi: 10.1016/0166-2236(89)90145-8. [DOI] [PubMed] [Google Scholar]
  48. Tago H., McGeer P. L., Bruce G., Hersh L. B. Distribution of choline acetyltransferase-containing neurons of the hypothalamus. Brain Res. 1987 Jul 7;415(1):49–62. doi: 10.1016/0006-8993(87)90268-x. [DOI] [PubMed] [Google Scholar]
  49. Taleb O., Trouslard J., Demeneix B. A., Feltz P., Bossu J. L., Dupont J. L., Feltz A. Spontaneous and GABA-evoked chloride channels on pituitary intermediate lobe cells and their internal Ca requirements. Pflugers Arch. 1987 Aug;409(6):620–631. doi: 10.1007/BF00584663. [DOI] [PubMed] [Google Scholar]
  50. Taleb O., Trouslard J., Demeneix B. A., Feltz P. Characterization of calcium and sodium currents in porcine pars intermedia cells. Neurosci Lett. 1986 May 6;66(1):55–60. doi: 10.1016/0304-3940(86)90165-5. [DOI] [PubMed] [Google Scholar]
  51. Tinner B., Fuxe K., Köhler C., Hersh L., Andersson K., Jansson A., Goldstein M., Agnati L. F. Evidence for the existence of a population of arcuate neurons costoring choline acetyltransferase and tyrosine hydroxylase immunoreactivities in the male rat. Neurosci Lett. 1989 Apr 24;99(1-2):44–49. doi: 10.1016/0304-3940(89)90262-0. [DOI] [PubMed] [Google Scholar]
  52. Tolliver J. M., Taylor R. L., Burt D. R. Muscarinic receptors in the posterior pituitary gland. Neuroendocrinology. 1981 Jan;32(1):33–37. doi: 10.1159/000123126. [DOI] [PubMed] [Google Scholar]
  53. Trouslard J., Demeneix B. A., Feltz P. Spontaneous spiking activities of porcine pars intermedia cells: effects of thyrotropin-releasing hormone. Neuroendocrinology. 1989 Jul;50(1):33–43. doi: 10.1159/000125199. [DOI] [PubMed] [Google Scholar]
  54. Trouslard J., Loeffler J. P., Demeneix B. A., Feltz P. Thyrotropin-releasing hormone stimulates porcine melanotrope cells in primary culture. Neurosci Lett. 1989 Mar 27;98(2):234–239. doi: 10.1016/0304-3940(89)90516-8. [DOI] [PubMed] [Google Scholar]
  55. Vuillez P., Pérez S. C., Stoeckel M. E. Colocalization of GABA and tyrosine hydroxylase immunoreactivities in the axons innervating the neurointermediate lobe of the rat pituitary: an ultrastructural immunogold study. Neurosci Lett. 1987 Aug 18;79(1-2):53–58. doi: 10.1016/0304-3940(87)90671-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES