Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Mar;422:333–350. doi: 10.1113/jphysiol.1990.sp017987

Feed-forward inhibitory potentials and excitatory interactions in guinea-pig hippocampal pyramidal cells.

D A Turner 1
PMCID: PMC1190135  PMID: 2352183

Abstract

1. The patterns of inhibition in the CA1 region of the rat hippocampus were evaluated by focal proximal and distal stratum radiatum stimulation, during intracellular recording. The characteristics of isolated inhibitory responses and the interactions of excitatory and inhibitory potentials were analysed. 2. The amplitude of minimal inhibitory postsynaptic potentials (IPSPs) evoked by both proximal and distal stimulation averaged -0.51 +/- 0.24 mV (mean +/- S.D.; n = 32). These responses demonstrated little variability from trial to trial and showed no net trends in amplitude at a stimulation rate of 1 Hz. 3. Minimal IPSPs demonstrated a short latency to onset (2.90 +/- 1.58 ms for proximal and 3.64 +/- 1.39 ms for distal) at stimulation levels which were insufficient to evoke an extracellular field potential. Thus, minimal IPSPs were recruited through feed-forward circuitry, based on the rapid onset and the lack of activation of recurrent collaterals. 4. The minimal IPSPs showed a similar 10-90% rise time for proximal and distal responses. However, the half-width and decay time constant (from the peak) were more prolonged for the distal stimulation, indicating that a late IPSP component was evoked primarily by the distal stimulation. This late component was not observed in isolation at low stimulation intensities. 5. The conductance transient underlying the IPSPs was calculated using a neurone cable model. The proximal IPSP responses were simulated by an alpha input function (at the soma) with a peak conductance in the range of 2.5-45 nS (alpha = 1.75; reversal potential -1.0 to -10 mV). The distal IPSP shape was only partially reproduced by a longer single transient (alpha = 1.25), suggesting the presence of a second, slower component. However, insufficient data on this slower component precluded a more exact simulation of the distal IPSP response. 6. Analysis of interactions between minimal excitatory postsynaptic potentials (EPSPs) and IPSPs showed that often the rising as well as the falling phase of the EPSP could be affected by the IPSP. At small stimulation levels, minimal EPSPs and IPSPs were closely overlapping, but the IPSPs were of significantly longer duration than EPSP responses. 7. The composite EPSP waveform shape became progressively truncated with increasing afferent stimulation. Feed-forward inhibition limited the time course of excitation to a narrow window, approximately 3-5 ms wide. Feed-forward postsynaptic inhibition significantly limited both the duration and the overall efficacy of small EPSPs in CA1 pyramidal neurones.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. LOCATION OF POSTSYNAPTIC INHIBITORY SYNAPSES ON HIPPOCAMPAL PYRAMIDS. J Neurophysiol. 1964 Jul;27:592–607. doi: 10.1152/jn.1964.27.4.592. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. C., LOYNING Y. PATHWAY OF POSTSYNAPTIC INHIBITION IN THE HIPPOCAMPUS. J Neurophysiol. 1964 Jul;27:608–619. doi: 10.1152/jn.1964.27.4.608. [DOI] [PubMed] [Google Scholar]
  3. Alger B. E. Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. J Neurophysiol. 1984 Nov;52(5):892–910. doi: 10.1152/jn.1984.52.5.892. [DOI] [PubMed] [Google Scholar]
  4. Alger B. E., Nicoll R. A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol. 1982 Jul;328:105–123. doi: 10.1113/jphysiol.1982.sp014255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andersen P., Silfvenius H., Sundberg S. H., Sveen O. A comparison of distal and proximal dendritic synapses on CAi pyramids in guinea-pig hippocampal slices in vitro. J Physiol. 1980 Oct;307:273–299. doi: 10.1113/jphysiol.1980.sp013435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson P., Storm J., Wheal H. V. Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro. J Physiol. 1987 Feb;383:509–526. doi: 10.1113/jphysiol.1987.sp016425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ashwood T. J., Lancaster B., Wheal H. V. In vivo and in vitro studies on putative interneurones in the rat hippocampus: possible mediators of feed-forward inhibition. Brain Res. 1984 Feb 20;293(2):279–291. doi: 10.1016/0006-8993(84)91235-6. [DOI] [PubMed] [Google Scholar]
  8. Brown T. H., Johnston D. Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. J Neurophysiol. 1983 Aug;50(2):487–507. doi: 10.1152/jn.1983.50.2.487. [DOI] [PubMed] [Google Scholar]
  9. Buzsáki G. Feed-forward inhibition in the hippocampal formation. Prog Neurobiol. 1984;22(2):131–153. doi: 10.1016/0301-0082(84)90023-6. [DOI] [PubMed] [Google Scholar]
  10. Collingridge G. L., Gage P. W., Robertson B. Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol. 1984 Nov;356:551–564. doi: 10.1113/jphysiol.1984.sp015482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dingledine R., Gjerstad L. Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol. 1980 Aug;305:297–313. doi: 10.1113/jphysiol.1980.sp013364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dingledine R., Korn S. J. Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol. 1985 Sep;366:387–409. doi: 10.1113/jphysiol.1985.sp015804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dingledine R., Langmoen I. A. Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res. 1980 Mar 10;185(2):277–287. doi: 10.1016/0006-8993(80)91068-9. [DOI] [PubMed] [Google Scholar]
  14. Freund T. F., Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988 Nov 10;336(6195):170–173. doi: 10.1038/336170a0. [DOI] [PubMed] [Google Scholar]
  15. Frotscher M., Léránth C., Lübbers K., Oertel W. H. Commissural afferents innervate glutamate decarboxylase immunoreactive non-pyramidal neurons in the guinea pig hippocampus. Neurosci Lett. 1984 May 4;46(2):137–143. doi: 10.1016/0304-3940(84)90431-2. [DOI] [PubMed] [Google Scholar]
  16. Griffith W. H., Brown T. H., Johnston D. Voltage-clamp analysis of synaptic inhibition during long-term potentiation in hippocampus. J Neurophysiol. 1986 Apr;55(4):767–775. doi: 10.1152/jn.1986.55.4.767. [DOI] [PubMed] [Google Scholar]
  17. Kehl S. J., McLennan H. An electrophysiological characterization of inhibitions and postsynaptic potentials in rat hippocampal CA3 neurones in vitro. Exp Brain Res. 1985;60(2):299–308. doi: 10.1007/BF00235924. [DOI] [PubMed] [Google Scholar]
  18. Knowles W. D., Schwartzkroin P. A. Local circuit synaptic interactions in hippocampal brain slices. J Neurosci. 1981 Mar;1(3):318–322. doi: 10.1523/JNEUROSCI.01-03-00318.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lacaille J. C., Mueller A. L., Kunkel D. D., Schwartzkroin P. A. Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci. 1987 Jul;7(7):1979–1993. doi: 10.1523/JNEUROSCI.07-07-01979.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lacaille J. C., Schwartzkroin P. A. Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology. J Neurosci. 1988 Apr;8(4):1400–1410. doi: 10.1523/JNEUROSCI.08-04-01400.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lancaster B., Wheal H. V. The synaptically evoked late hyperpolarisation in hippocampal CA1 pyramidal cells is resistant to intracellular EGTA. Neuroscience. 1984 May;12(1):267–275. doi: 10.1016/0306-4522(84)90152-0. [DOI] [PubMed] [Google Scholar]
  22. McCarren M., Alger B. E. Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J Neurophysiol. 1985 Feb;53(2):557–571. doi: 10.1152/jn.1985.53.2.557. [DOI] [PubMed] [Google Scholar]
  23. Miles R., Wong R. K. Unitary inhibitory synaptic potentials in the guinea-pig hippocampus in vitro. J Physiol. 1984 Nov;356:97–113. doi: 10.1113/jphysiol.1984.sp015455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newberry N. R., Nicoll R. A. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol. 1984 Mar;348:239–254. doi: 10.1113/jphysiol.1984.sp015107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peet M. J., McLennan H. Pre-and postsynaptic actions of baclofen: blockade of the late synaptically-evoked hyperpolarization of CA1 hippocampal neurones. Exp Brain Res. 1986;61(3):567–574. doi: 10.1007/BF00237582. [DOI] [PubMed] [Google Scholar]
  26. Sayer R. J., Redman S. J., Andersen P. Amplitude fluctuations in small EPSPs recorded from CA1 pyramidal cells in the guinea pig hippocampal slice. J Neurosci. 1989 Mar;9(3):840–850. doi: 10.1523/JNEUROSCI.09-03-00840.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwartzkroin P. A., Kunkel D. D. Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus. J Comp Neurol. 1985 Feb 8;232(2):205–218. doi: 10.1002/cne.902320206. [DOI] [PubMed] [Google Scholar]
  28. Segal M., Barker J. L. Rat hippocampal neurons in culture: properties of GABA-activated Cl- ion conductance. J Neurophysiol. 1984 Mar;51(3):500–515. doi: 10.1152/jn.1984.51.3.500. [DOI] [PubMed] [Google Scholar]
  29. Segal M., Barker J. L. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. J Neurophysiol. 1984 Sep;52(3):469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  30. Segev I., Parnas I. Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs. Biophys J. 1983 Jan;41(1):41–50. doi: 10.1016/S0006-3495(83)84404-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seress L., Ribak C. E. Direct commissural connections to the basket cells of the hippocampal dentate gyrus: anatomical evidence for feed-forward inhibition. J Neurocytol. 1984 Apr;13(2):215–225. doi: 10.1007/BF01148116. [DOI] [PubMed] [Google Scholar]
  32. Thompson S. M., Gähwiler B. H. Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J Neurophysiol. 1989 Mar;61(3):501–511. doi: 10.1152/jn.1989.61.3.501. [DOI] [PubMed] [Google Scholar]
  33. Turner D. A. Conductance transients onto dendritic spines in a segmental cable model of hippocampal neurons. Biophys J. 1984 Jul;46(1):85–96. doi: 10.1016/S0006-3495(84)84001-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Turner D. A. Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate). Biophys J. 1984 Jul;46(1):73–84. doi: 10.1016/S0006-3495(84)84000-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turner D. A. Waveform and amplitude characteristics of evoked responses to dendritic stimulation of CA1 guinea-pig pyramidal cells. J Physiol. 1988 Jan;395:419–439. doi: 10.1113/jphysiol.1988.sp016927. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES