Abstract
1. The relationship between intracellular pH (pHi) and contractile activity was investigated in papillary muscles isolated from right ventricle of normal and streptozotocin (STZ)-induced diabetic rats. pHi changes induced by 20 mM-NH4Cl were recorded with H(+)-sensitive microelectrodes. 2. An increase in pHi of approximately 0.20 pH units on exposure to NH4Cl led to an increase of the maximum developed tension, which was 707.8 +/- 57.5% (mean +/- S.E. of mean, n = 10) of control in normal muscles and 271 +/- 16.3% (n = 10) in diabetic muscles. On the other hand, acidosis induced by NH4Cl withdrawal was associated with a fall in developed tension to 48.2 +/- 6.7% of control in diabetic muscles, as compared to 79.2 +/- 8% in normal muscles. 3. The decrease in tension associated with acidosis was rapidly followed (in approximately 2 min) by a transient redevelopment of force, which peaked at 80.2 +/- 8.6% of control in the diabetic muscles as compared to 153.5 +/- 11.7% in normal papillary muscles. The peak of this secondary positive inotropy coincided in both groups of muscles with the maximum decrease of pHi, i.e. -0.40 +/- 0.02 and -0.28 +/- 0.04 pH units in diabetic and normal muscles, respectively. 4. Caffeine (10 mM), which had a marked positive inotropic effect in both groups of muscles, abolished the transient recovery of tension occurring after NH4Cl withdrawal. Ryanodine (2 microM) which had a marked negative inotropic effect on both normal and diabetic papillary muscles, also suppressed the transient recovery of tension. 5. The presence of amiloride (1 mM) during acidosis induced by NH4Cl withdrawal abolished the observed differences in developed tension, in particular the transient recovery of tension, between normal and diabetic muscles, as it abolished the differences in the amplitude of pHi decrease and in the time course of pHi recovery. 6. The presence of 2',4'-dichlorobenzamil amiloride (40 microM) significantly and similarly delayed and reduced the amplitude of transient recovery of tension in both normal and diabetic papillary muscles. 7. We conclude that STZ-induced diabetes induces a decrease in pHi sensitivity of contractile force. This may be the consequence of a change in sarcoplasmic reticulum (SR) composition and function, and may also indirectly result from changes in Na(+)-H+ exchange activity, particularly during intracellular acidosis.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammann D., Lanter F., Steiner R. A., Schulthess P., Shijo Y., Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem. 1981 Dec;53(14):2267–2269. doi: 10.1021/ac00237a031. [DOI] [PubMed] [Google Scholar]
- Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Bridge J. H., MacLeod K. T. The mechanism of ryanodine action in rabbit ventricular muscle evaluated with Ca-selective microelectrodes and rapid cooling contractures. Can J Physiol Pharmacol. 1987 Apr;65(4):610–618. doi: 10.1139/y87-103. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflugers Arch. 1982 Apr;393(2):171–178. doi: 10.1007/BF00582941. [DOI] [PubMed] [Google Scholar]
- Bielefeld D. R., Pace C. S., Boshell B. R. Altered sensitivity of chronic diabetic rat heart to calcium. Am J Physiol. 1983 Dec;245(6):E560–E567. doi: 10.1152/ajpendo.1983.245.6.E560. [DOI] [PubMed] [Google Scholar]
- Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bountra C., Kaila K., Vaughan-Jones R. D. Effect of repetitive activity upon intracellular pH, sodium and contraction in sheep cardiac Purkinje fibres. J Physiol. 1988 Apr;398:341–360. doi: 10.1113/jphysiol.1988.sp017046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bountra C., Kaila K., Vaughan-Jones R. D. Mechanism of rate-dependent pH changes in the sheep cardiac Purkinje fibre. J Physiol. 1988 Dec;406:483–501. doi: 10.1113/jphysiol.1988.sp017392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannell M. B., Vaughan-Jones R. D., Lederer W. J. Ryanodine block of calcium oscillations in heart muscle and the sodium-tension relationship. Fed Proc. 1985 Dec;44(15):2964–2969. [PubMed] [Google Scholar]
- Deitmer J. W., Ellis D. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J Physiol. 1980 Jul;304:471–488. doi: 10.1113/jphysiol.1980.sp013337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Effects of ryanodine in skinned cardiac cells. Fed Proc. 1985 Dec;44(15):2970–2976. [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium. 1985 Apr;6(1-2):95–108. doi: 10.1016/0143-4160(85)90037-5. [DOI] [PubMed] [Google Scholar]
- Fein F. S., Kornstein L. B., Strobeck J. E., Capasso J. M., Sonnenblick E. H. Altered myocardial mechanics in diabetic rats. Circ Res. 1980 Dec;47(6):922–933. doi: 10.1161/01.res.47.6.922. [DOI] [PubMed] [Google Scholar]
- Fein F. S., Sonnenblick E. H. Diabetic cardiomyopathy. Prog Cardiovasc Dis. 1985 Jan-Feb;27(4):255–270. doi: 10.1016/0033-0620(85)90009-x. [DOI] [PubMed] [Google Scholar]
- Feuvray D., Idell-Wenger J. A., Neely J. R. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res. 1979 Mar;44(3):322–329. doi: 10.1161/01.res.44.3.322. [DOI] [PubMed] [Google Scholar]
- Frelin C., Barbry P., Vigne P., Chassande O., Cragoe E. J., Jr, Lazdunski M. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie. 1988 Sep;70(9):1285–1290. doi: 10.1016/0300-9084(88)90196-4. [DOI] [PubMed] [Google Scholar]
- Ganguly P. K., Pierce G. N., Dhalla K. S., Dhalla N. S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol. 1983 Jun;244(6):E528–E535. doi: 10.1152/ajpendo.1983.244.6.E528. [DOI] [PubMed] [Google Scholar]
- Grassi de Gende A. O. The effect of pH on the calcium dependence of calcium accumulation in dog cardiac muscle sarcoplasmic reticulum. J Mol Cell Cardiol. 1988 Dec;20(12):1087–1093. doi: 10.1016/0022-2828(88)90589-5. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
- Lagadic-Gossmann D., Chesnais J. M., Feuvray D. Intracellular pH regulation in papillary muscle cells from streptozotocin diabetic rats: an ion-sensitive microelectrode study. Pflugers Arch. 1988 Oct;412(6):613–617. doi: 10.1007/BF00583762. [DOI] [PubMed] [Google Scholar]
- Levitsky D. O., Benevolensky D. S. Effects of changing Ca2+-to-H+ ratio on Ca2+ uptake by cardiac sarcoplasmic reticulum. Am J Physiol. 1986 Mar;250(3 Pt 2):H360–H365. doi: 10.1152/ajpheart.1986.250.3.H360. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Eibschutz B., Katz S., McNeill J. H. Depression of calcium transport in sarcoplasmic reticulum from diabetic rats: lack of involvement by specific regulatory mediators. Gen Pharmacol. 1984;15(1):1–5. doi: 10.1016/0306-3623(84)90071-5. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Katz S., McNeill J. H. The effect of alloxan- and streptozotocin-induced diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acylcarnitines. Can J Physiol Pharmacol. 1983 May;61(5):439–448. doi: 10.1139/y83-068. [DOI] [PubMed] [Google Scholar]
- Orchard C. H. The role of the sarcoplasmic reticulum in the response of ferret and rat heart muscle to acidosis. J Physiol. 1987 Mar;384:431–449. doi: 10.1113/jphysiol.1987.sp016462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penpargkul S., Fein F., Sonnenblick E. H., Scheuer J. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol. 1981 Mar;13(3):303–309. doi: 10.1016/0022-2828(81)90318-7. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Bersohn M. M., Nishimoto A. Y. Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ Res. 1982 Feb;50(2):287–293. doi: 10.1161/01.res.50.2.287. [DOI] [PubMed] [Google Scholar]
- Piwnica-Worms D., Jacob R., Horres C. R., Lieberman M. Na/H exchange in cultured chick heart cells. pHi regulation. J Gen Physiol. 1985 Jan;85(1):43–64. doi: 10.1085/jgp.85.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randle P. J., Garland P. B., Hales C. N., Newsholme E. A., Denton R. M., Pogson C. I. Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res. 1966;22:1–48. doi: 10.1016/b978-1-4831-9825-5.50004-x. [DOI] [PubMed] [Google Scholar]
- Sauviat M. P., Feuvray D. Electrophysiological analysis of the sensitivity to calcium in ventricular muscle from alloxan diabetic rats. Basic Res Cardiol. 1986 Sep-Oct;81(5):489–496. doi: 10.1007/BF01907755. [DOI] [PubMed] [Google Scholar]
- Solaro R. J., Lee J. A., Kentish J. C., Allen D. G. Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ Res. 1988 Oct;63(4):779–787. doi: 10.1161/01.res.63.4.779. [DOI] [PubMed] [Google Scholar]
- Sutko J. L., Willerson J. T. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat, and rabbit ventricular tissues. Circ Res. 1980 Mar;46(3):332–343. doi: 10.1161/01.res.46.3.332. [DOI] [PubMed] [Google Scholar]
- Tahiliani A. G., McNeill J. H. Diabetes-induced abnormalities in the myocardium. Life Sci. 1986 Mar 17;38(11):959–974. doi: 10.1016/0024-3205(86)90229-8. [DOI] [PubMed] [Google Scholar]
- Takeda N., Nakamura I., Hatanaka T., Ohkubo T., Nagano M. Myocardial mechanical and myosin isoenzyme alterations in streptozotocin-diabetic rats. Jpn Heart J. 1988 Jul;29(4):455–463. doi: 10.1536/ihj.29.455. [DOI] [PubMed] [Google Scholar]
- Vaughan-Jones R. D., Eisner D. A., Lederer W. J. Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J Gen Physiol. 1987 Jun;89(6):1015–1032. doi: 10.1085/jgp.89.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughan-Jones R. D., Lederer W. J., Eisner D. A. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature. 1983 Feb 10;301(5900):522–524. doi: 10.1038/301522a0. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
