Abstract
1. The electrical and mechanical activities of different regions of the canine lower oesophageal sphincter were measured using the single sucrose gap technique. 2. Spontaneous electrical activity was found in the region 0-6 mm oral to the squamocolumnar border. 3. The electrical activity consisted of bursts of spikes superimposed on slow waves. The slow-wave frequency ranged from 0.6 to 5 min-1 in different muscle strips. 4. The slow wave-spike complex and associated contraction were insensitive to tetrodotoxin and atropine. 5. In the pacemaker region, electrical stimulation of intrinsic nerves evoked excitatory junction potentials (atropine sensitive), inhibitory junction potentials (non-adrenergic) and post-stimulus excitation. 6. Increase in the frequency of the slow waves was obtained by muscarinic receptor stimulation (carbachol 10(-7) M) and 10 mM-KCl. 7. The distal lower oesophageal sphincter exhibited a high basal tension but did not show spontaneous electrical activity and stimulation of intrinsic nerves revealed only non-cholinergic, non-adrenergic inhibition. 8. The electrical slow-wave activity observed in the proximal sphincter may constitute the control mechanism for the phasic nature of the contractile activity seen during both the postprandial period and phase III of the interdigestive migrating myoelectric complex. 9. The neural cholinergic activity present in the proximal lower oesophageal sphincter suggests the possibility of neural modulation of the myogenic control activity.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arimori M., Code C. F., Schlegel J. F., Sturm R. E. Electrical activity of the canine esophagus and gastroesophageal sphincter: its relation to intraluminal pressure and movement of material. Am J Dig Dis. 1970 Mar;15(3):191–208. doi: 10.1007/BF02233449. [DOI] [PubMed] [Google Scholar]
- Asoh R., Goyal R. K. Electrical activity of the opossum lower esophageal sphincter in vivo. Its role in the basal sphincter pressure. Gastroenterology. 1978 May;74(5 Pt 1):835–840. [PubMed] [Google Scholar]
- Bengtsson B., Chow E. M., Marshall J. M. Activity of circular muscle of rat uterus at different times in pregnancy. Am J Physiol. 1984 Mar;246(3 Pt 1):C216–C223. doi: 10.1152/ajpcell.1984.246.3.C216. [DOI] [PubMed] [Google Scholar]
- Chow E., Huizinga J. D. Myogenic electrical control activity in longitudinal muscle of human and dog colon. J Physiol. 1987 Nov;392:21–34. doi: 10.1113/jphysiol.1987.sp016767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dent J., Dodds W. J., Sekiguchi T., Hogan W. J., Arndorfer R. C. Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology. 1983 Mar;84(3):453–460. [PubMed] [Google Scholar]
- Hall K. E., El-Sharkawy T. Y., Diamant N. E. Vagal control of migrating motor complex in the dog. Am J Physiol. 1982 Oct;243(4):G276–G284. doi: 10.1152/ajpgi.1982.243.4.G276. [DOI] [PubMed] [Google Scholar]
- Hellemans J., Vantrappen G. Electromyographic studies on canine esophageal motility. Am J Dig Dis. 1967 Dec;12(12):1240–1255. doi: 10.1007/BF02233925. [DOI] [PubMed] [Google Scholar]
- Holloway R. H., Blank E. L., Takahashi I., Dodds W. J., Dent J., Sarna S. K. Electrical control activity of the lower esophageal sphincter in unanesthetized opossums. Am J Physiol. 1987 Apr;252(4 Pt 1):G511–G521. doi: 10.1152/ajpgi.1987.252.4.G511. [DOI] [PubMed] [Google Scholar]
- Huizinga J. D., Chow E., Diamant N. E., el-Sharkaway T. Y. Coordination of electrical activities in muscle layers of the pig colon. Am J Physiol. 1987 Jan;252(1 Pt 1):G136–G142. doi: 10.1152/ajpgi.1987.252.1.G136. [DOI] [PubMed] [Google Scholar]
- Huizinga J. D., Stern H. S., Chow E., Diamant N. E., El-Sharkawy T. Y. Electrophysiologic control of motility in the human colon. Gastroenterology. 1985 Feb;88(2):500–511. doi: 10.1016/0016-5085(85)90513-x. [DOI] [PubMed] [Google Scholar]
- Itoh Z., Honda R., Aizawa I., Takeuchi S., Hiwatashi K., Couch E. F. Interdigestive motor activity of the lower esophageal sphincter in the conscious dog. Am J Dig Dis. 1978 Mar;23(3):239–247. doi: 10.1007/BF01072324. [DOI] [PubMed] [Google Scholar]
- KELLEY M. L., Jr, WILBUR D. L., 3rd, SCHLEGEL J. F., CODE C. F. Deglutitive responses in the gastroesophageal sphincter of healthy human beings. J Appl Physiol. 1960 May;15:483–488. doi: 10.1152/jappl.1960.15.3.483. [DOI] [PubMed] [Google Scholar]
- Miolan J. P., Roman C. Discharge of efferent vagal fibers supplying gastric antrum: indirect study by nerve suture technique. Am J Physiol. 1978 Oct;235(4):E366–E373. doi: 10.1152/ajpendo.1978.235.4.E366. [DOI] [PubMed] [Google Scholar]
- Rayl J. E., Balison J. R., Thomas H. F., Woodward E. R. Combined radiographic, manometric, and histologic localization of the canine lower esophageal sphincter. J Surg Res. 1972 Dec;13(6):307–314. doi: 10.1016/0022-4804(72)90081-9. [DOI] [PubMed] [Google Scholar]
- Rinaldo J. A., Jr, Levey J. F., Smathers H. M., Gardner L. W., McGinnis K. D. An integrated anatomic, physiologic and cineradiologic study of the canine gastroesophageal sphincter. Am J Dig Dis. 1971 Jun;16(6):556–565. doi: 10.1007/BF02235554. [DOI] [PubMed] [Google Scholar]