Abstract
1. Experiments have been performed on human subjects to determine the principal mechanisms underlying the break-down in performance during ocular pursuit of pseudo-random target motion stimuli composed of a mixture of two, four or six sinusoids. As observed in a previous experiment there was a reduction in the ratio of eye velocity to target velocity (eye velocity gain) for lower-frequency components of the stimulus whenever the highest frequency exceeded 0.4 Hz, but the following effects were also observed. 2. Using a combination of four sinusoids in which the three lowest frequencies (0.11, 0.24 and 0.37 Hz) had a constant peak velocity (3 or 6 deg/s) it was shown that an increase in the velocity of the highest frequency (0.78 or 1.56 Hz) caused a progressive decline in gain of the low frequencies and a significant reduction in phase lag for the highest-frequency component. 3. Using a combination of two sinusoids (0.44 and 1.56 Hz), in which the peak velocity was varied over a wide range (4-32 deg/s), it was shown that the reduction in low-frequency gain was dependent on the velocity ratio between the frequency components rather than their absolute velocity. 4. Experiments using a combination of either four or six sinusoids in which the two highest frequencies were very close have revealed a true enhancement in the gain of the highest-frequency component in relation to other frequency components of the stimulus. 5. In the same experiments the phase relationships in the response were shown to vary according to the frequency range of the stimulus in such a way that phase advance was normally present at the lowest frequency even when this ranged up to 0.89 Hz. 6. When the oculomotor system was passively stimulated by allowing the subject to fixate a tachistoscopically illuminated stationary target, pseudo-random target motion induced a response which exhibited characteristics similar to those of active pursuit; that is, enhancement of the gain of the highest frequency and phase advance at the lowest frequency. 7. During passive stimulation the changes in gain of the low frequencies with increasing frequency of the highest-frequency component were not consistent with those of active pursuit. However, increasing the velocity of the highest-frequency component to simulate the retinal velocity error conditions of normal active pursuit caused a significant decrease in low-frequency gain and a subjective effect of high-frequency dominance similar to that observed during active pursuit.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF




























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahill A. T., Iandolo M. J., Troost B. T. Smooth pursuit eye movements in response to unpredictable target waveforms. Vision Res. 1980;20(11):923–931. doi: 10.1016/0042-6989(80)90073-5. [DOI] [PubMed] [Google Scholar]
- Barnes G. R., Benson A. J., Prior A. R. Visual-vestibular interaction in the control of eye movement. Aviat Space Environ Med. 1978 Apr;49(4):557–564. [PubMed] [Google Scholar]
- Barnes G. R., Crombie J. W., Edge A. The effects of ethanol on visual-vestibular interaction during active and passive head movements. Aviat Space Environ Med. 1985 Jul;56(7):695–701. [PubMed] [Google Scholar]
- Barnes G. R., Crombie J. W. The interaction of conflicting retinal motion stimuli in oculomotor control. Exp Brain Res. 1985;59(3):548–558. doi: 10.1007/BF00261346. [DOI] [PubMed] [Google Scholar]
- Barnes G. R., Donnelly S. F., Eason R. D. Predictive velocity estimation in the pursuit reflex response to pseudo-random and step displacement stimuli in man. J Physiol. 1987 Aug;389:111–136. doi: 10.1113/jphysiol.1987.sp016649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes G. R., Eason R. D. Effects of visual and non-visual mechanisms on the vestibulo-ocular reflex during pseudo-random head movements in man. J Physiol. 1988 Jan;395:383–400. doi: 10.1113/jphysiol.1988.sp016925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes G. R., Edge A. Non-linear characteristics of visual-vestibular interaction. Acta Otolaryngol Suppl. 1984;406:218–223. doi: 10.3109/00016488309123037. [DOI] [PubMed] [Google Scholar]
- Barnes G. R., Hill T. The influence of display characteristics on active pursuit and passively induced eye movements. Exp Brain Res. 1984;56(3):438–447. doi: 10.1007/BF00237984. [DOI] [PubMed] [Google Scholar]
- Becker W., Fuchs A. F. Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target. Exp Brain Res. 1985;57(3):562–575. doi: 10.1007/BF00237843. [DOI] [PubMed] [Google Scholar]
- Büttner U., Waespe W. Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res. 1984;55(1):97–104. doi: 10.1007/BF00240502. [DOI] [PubMed] [Google Scholar]
- Carl J. R., Gellman R. S. Human smooth pursuit: stimulus-dependent responses. J Neurophysiol. 1987 May;57(5):1446–1463. doi: 10.1152/jn.1987.57.5.1446. [DOI] [PubMed] [Google Scholar]
- Collewijn H., Tamminga E. P. Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets. J Physiol. 1986 Oct;379:109–129. doi: 10.1113/jphysiol.1986.sp016243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collewijn H., Tamminga E. P. Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol. 1984 Jun;351:217–250. doi: 10.1113/jphysiol.1984.sp015242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois M. F., Collewijn H. Optokinetic reactions in man elicited by localized retinal motion stimuli. Vision Res. 1979;19(10):1105–1115. doi: 10.1016/0042-6989(79)90005-1. [DOI] [PubMed] [Google Scholar]
- Kase M., Noda H., Suzuki D. A., Miller D. C. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979 Aug 17;205(4407):717–720. doi: 10.1126/science.111350. [DOI] [PubMed] [Google Scholar]
- Kelly D. H. Visual processing of moving stimuli. J Opt Soc Am A. 1985 Feb;2(2):216–225. doi: 10.1364/josaa.2.000216. [DOI] [PubMed] [Google Scholar]
- Kowler E., Steinman R. M. The effect of expectations on slow oculomotor control. I. Periodic target steps. Vision Res. 1979;19(6):619–632. doi: 10.1016/0042-6989(79)90238-4. [DOI] [PubMed] [Google Scholar]
- Kowler E., Steinman R. M. The effect of expectations on slow oculomotor control. II. Single target displacements. Vision Res. 1979;19(6):633–646. doi: 10.1016/0042-6989(79)90239-6. [DOI] [PubMed] [Google Scholar]
- Lisberger S. G., Evinger C., Johanson G. W., Fuchs A. F. Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J Neurophysiol. 1981 Aug;46(2):229–249. doi: 10.1152/jn.1981.46.2.229. [DOI] [PubMed] [Google Scholar]
- Lisberger S. G., Fuchs A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol. 1978 May;41(3):733–763. doi: 10.1152/jn.1978.41.3.733. [DOI] [PubMed] [Google Scholar]
- Lisberger S. G., Fuchs A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol. 1978 May;41(3):764–777. doi: 10.1152/jn.1978.41.3.764. [DOI] [PubMed] [Google Scholar]
- Michael J. A., Jones G. M. Dependence of visual tracking capability upon stimulus predictability. Vision Res. 1966 Dec;6(12):707–716. doi: 10.1016/0042-6989(66)90082-4. [DOI] [PubMed] [Google Scholar]
- Miles F. A., Optican L. M., Lisberger S. G. An adaptive equalizer model of the primate vestibulo-ocular reflex. Rev Oculomot Res. 1985;1:313–326. [PubMed] [Google Scholar]
- Noda H. Mossy fibres sending retinal-slip, eye, and head velocity signals to the flocculus of the monkey. J Physiol. 1986 Oct;379:39–60. doi: 10.1113/jphysiol.1986.sp016240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda H., Warabi T. Eye position signals in the flocculus of the monkey during smooth-pursuit eye movements. J Physiol. 1982 Mar;324:187–202. doi: 10.1113/jphysiol.1982.sp014106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda H., Warabi T. Responses of Purkinje cells and mossy fibres in the flocculus of the monkey during sinusoidal movements of a visual pattern. J Physiol. 1987 Jun;387:611–628. doi: 10.1113/jphysiol.1987.sp016591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Optican L. M., Zee D. S., Chu F. C. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements. J Neurophysiol. 1985 Jul;54(1):110–122. doi: 10.1152/jn.1985.54.1.110. [DOI] [PubMed] [Google Scholar]
- Pola J., Wyatt H. J. Active and passive smooth eye movements: effects of stimulus size and location. Vision Res. 1985;25(8):1063–1076. doi: 10.1016/0042-6989(85)90094-x. [DOI] [PubMed] [Google Scholar]
- Robinson D. A., Gordon J. L., Gordon S. E. A model of the smooth pursuit eye movement system. Biol Cybern. 1986;55(1):43–57. doi: 10.1007/BF00363977. [DOI] [PubMed] [Google Scholar]
- Robinson D. A. The mechanics of human smooth pursuit eye movement. J Physiol. 1965 Oct;180(3):569–591. doi: 10.1113/jphysiol.1965.sp007718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schalén L. Quantification of tracking eye movements in normal subjects. Acta Otolaryngol. 1980 Nov-Dec;90(5-6):404–413. doi: 10.3109/00016488009131742. [DOI] [PubMed] [Google Scholar]
- St-Cyr G. J., Fender D. H. Nonlinearities of the human oculomotor system: gain. Vision Res. 1969 Oct;9(10):1235–1246. doi: 10.1016/0042-6989(69)90111-4. [DOI] [PubMed] [Google Scholar]
- St-Cyr G. J., Fender D. H. Nonlinearities of the human oculomotor system: time delays. Vision Res. 1969 Dec;9(12):1491–1503. doi: 10.1016/0042-6989(69)90065-0. [DOI] [PubMed] [Google Scholar]
- WESTHEIMER G. Eye movement responses to a horizontally moving visual stimulus. AMA Arch Ophthalmol. 1954 Dec;52(6):932–941. doi: 10.1001/archopht.1954.00920050938013. [DOI] [PubMed] [Google Scholar]
- Waespe W., Büttner U., Henn V. Input-output activity of the primate flocculus during visual-vestibular interaction. Ann N Y Acad Sci. 1981;374:491–503. doi: 10.1111/j.1749-6632.1981.tb30894.x. [DOI] [PubMed] [Google Scholar]
- Waespe W., Henn V. Gaze stabilization in the primate. The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit. Rev Physiol Biochem Pharmacol. 1987;106:37–125. [PubMed] [Google Scholar]
- Yasui S., Young L. R. On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus. J Physiol. 1984 Feb;347:17–33. doi: 10.1113/jphysiol.1984.sp015050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasui S., Young L. R. Perceived visual motion as effective stimulus to pursuit eye movement system. Science. 1975 Nov 28;190(4217):906–908. doi: 10.1126/science.1188373. [DOI] [PubMed] [Google Scholar]