Abstract
1. The patch-clamp method has been used to study the selectivity of single ATP-sensitive potassium channels in excised membrane patches from dissociated rat pancreatic beta-cells. 2. In symmetrical K+ concentrations the current-voltage relation of this channel showed slight inward rectification. The K+ permeability coefficient was 1.05 x 10(-13) cm3/s ([K+]o = 140 mM; 20 degrees C) in the inside-out patch and somewhat smaller when measured under the same conditions in the outside-out configuration (0.86 x 10(-13) cm3/s). 3. When intracellular Rb+ replaced K+, inward K+ currents were unaffected but the outward currents carried by Rb+ were substantially smaller. The extent of the reduction in the outward currents depended on the internal Rb+/K+ ratio and increased as [Rb+]i was raised. Both inward and outward Rb+ currents were blocked by 1 mM-ATP. No currents were measurable in symmetrical 140 mM-Rb+ solutions. 4. With 140 mM [K+]o and 140 mM [Rb+]i the single-channel current-voltage relation reversed at +8 mV and the potential at which the variance of the ATP-sensitive current was least was shifted by 6 mV to more positive potentials. These data suggest a PRb/PK ratio of around 0.7. 5. Outward Rb+ currents were reduced at all potentials in inside-out patches exposed to 107 mM-Rb+ solution intracellularly and 5 mM-K+ externally. 6. Partial replacement of external K+ with Rb+ substantially reduced the inward currents recorded from outside-out patches and also decreased outward K+ currents. 7. In outside-out patches, the addition of 1 mM-Rb+ to the external solution produced a block of inward K+ currents that initially increased and then decreased again with hyperpolarization. This suggests that the Rb+ block of K+ currents is voltage dependent and that Rb+ acts as a permeant blocker of K+ currents. 8. The sodium permeability of the channel, relative to that of potassium, was 0.39 for internal Na+ and 0.007 for external Na+ ions. 9. We conclude that Rb+ serves as an acceptable tracer for K+ in efflux studies when changes in K+ flux through ATP-sensitive K+ channels are of interest but that the magnitude of such fluxes will be considerably underestimated.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft F. M. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118. doi: 10.1146/annurev.ne.11.030188.000525. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Ashcroft S. J., Harrison D. E. Properties of single potassium channels modulated by glucose in rat pancreatic beta-cells. J Physiol. 1988 Jun;400:501–527. doi: 10.1113/jphysiol.1988.sp017134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Stanfield P. R. The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. J Physiol. 1983 Oct;343:407–428. doi: 10.1113/jphysiol.1983.sp014900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atwater I., Ribalet B., Rojas E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol. 1978 May;278:117–139. doi: 10.1113/jphysiol.1978.sp012296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boschero A. C., Malaisse W. J. Stimulus-secretion coupling of glucose-induced insulin release. XXIX. Regulation of 86Rb+ efflux from perfused islets. Am J Physiol. 1979 Feb;236(2):E139–E146. doi: 10.1152/ajpendo.1979.236.2.E139. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
- Dawson C. M., Croghan P. C., Scott A. M., Bangham J. A. Potassium and rubidium permeability and potassium conductance of the beta-cell membrane in mouse islets of Langerhans. Q J Exp Physiol. 1986 Apr;71(2):205–222. doi: 10.1113/expphysiol.1986.sp002979. [DOI] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K., Sakamoto Y. Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J Physiol. 1975 Mar;246(2):459–478. doi: 10.1113/jphysiol.1975.sp010899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Findlay I. The effects of magnesium upon adenosine triphosphate-sensitive potassium channels in a rat insulin-secreting cell line. J Physiol. 1987 Oct;391:611–629. doi: 10.1113/jphysiol.1987.sp016759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallacher D. V., Maruyama Y., Petersen O. H. Patch-clamp study of rubidium and potassium conductances in single cation channels from mammalian exocrine acini. Pflugers Arch. 1984 Aug;401(4):361–367. doi: 10.1007/BF00584336. [DOI] [PubMed] [Google Scholar]
- Gay L. A., Stanfield P. R. The selectivity of the delayed potassium conductance of frog skeletal muscle fibers. Pflugers Arch. 1978 Dec 28;378(2):177–179. doi: 10.1007/BF00584453. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. D-glucose inhibits potassium efflux from pancreatic islet cells. Nature. 1978 Jan 19;271(5642):271–273. doi: 10.1038/271271a0. [DOI] [PubMed] [Google Scholar]
- Henquin J. C., Meissner H. P. Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia. 1984 Oct 15;40(10):1043–1052. doi: 10.1007/BF01971450. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. The potassium permeability of pancreatic islet cells: mechanisms of control and influence on insulin release. Horm Metab Res Suppl. 1980;Suppl 10:66–73. [PubMed] [Google Scholar]
- Horie M., Irisawa H., Noma A. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol. 1987 Jun;387:251–272. doi: 10.1113/jphysiol.1987.sp016572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakei M., Ashcroft F. M. A microflow superfusion system for use with excised membrane patches. Pflugers Arch. 1987 Jul;409(3):337–341. doi: 10.1007/BF00583487. [DOI] [PubMed] [Google Scholar]
- Kakei M., Noma A. Adenosine-5'-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J Physiol. 1984 Jul;352:265–284. doi: 10.1113/jphysiol.1984.sp015290. [DOI] [PMC free article] [PubMed] [Google Scholar]
