Abstract
1. Radioactive rubidium (86Rb+) efflux was used to measure potassium (K+) permeability in a study designed to asses both the presence and the sensitivity to ions and drugs of the K+ channels in the plasma membrane of rat lactotrophs. 2. Rb+ efflux from Rb+-pre-loaded lactotrophs into nominally calcium-free solution containing 5 mM-K+ was linear from 1 to 60 s, with a calculated rate of about 0.1%/s. Raising K+ concentrations to depolarize the cells stimulated the Rb+ efflux (0.2%/s), which was already significant after 1 s of exposure of the cell to 100 mM-K+. This component of Rb+ efflux has been designated component V (sensitive to voltage and Ca2+ independent). 3. Addition of Ca2+ to 5 mM-K+ solution had no effect on resting Rb+ efflux (0.1%/s), but did further stimulate Rb+ efflux into K+-rich solutions. This component, which has been designated component C, was completely inhibited by 0.5 mM-cadmium. These data fit the view that the increase in intracellular Ca2+ concentration during depolarization opens certain (Ca2+-activated) K+ channels. 4. K+ efflux was differently affected by K+ channel blockers. Tetraethylammonium (TEA) inhibited both V and C components while 4-aminopyridine (4-AP) inhibited the component V without modifying the C component of Rb+ efflux. 5. Dopamine appears to affect both types of Rb+ efflux components. Dopamine increased the efflux of Rb+ in a nominally Ca2+-free medium containing 5 mM-K+ (component V). This effect was statistically significant 15 s after exposure of the cells to 10 nM-dopamine. Increasing the concentrations of K+ to gradually depolarize the cells enhanced the rate of increase of Rb+ efflux induced by dopamine, being evident in the initial 2-5 s of incubations. Dopamine also increased Rb+ efflux in a 5 mM-K+ solution containing 1 mM-Ca2+ (component C). This effect was rapid (2-5 s) and inhibited by 0.5 mM-cadmium. The combined action of dopamine on both component C and V caused the cells to be less sensitive to depolarizing concentrations of K+. The increase in Rb+ efflux and the enhancement of prolactin release induced by high concentrations of K+ were, indeed, prevented by exposure of the cells to 10 nM-dopamine. 6. The effects of dopamine on either component V or component C were pharmacologically characterized as D2 receptor mediated, being mimicked by selective D2 receptor agonists (quinpirole and RU 24213) and stereospecifically blocked by the D2 receptor antagonist sulpiride.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartschat D. K., Blaustein M. P. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain. J Physiol. 1985 Apr;361:441–457. doi: 10.1113/jphysiol.1985.sp015654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartschat D. K., Blaustein M. P. Phencyclidine in low doses selectively blocks a presynaptic voltage-regulated potassium channel in rat brain. Proc Natl Acad Sci U S A. 1986 Jan;83(1):189–192. doi: 10.1073/pnas.83.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartschat D. K., Blaustein M. P. Potassium channels in isolated presynaptic nerve terminals from rat brain. J Physiol. 1985 Apr;361:419–440. doi: 10.1113/jphysiol.1985.sp015653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caron M. G., Beaulieu M., Raymond V., Gagné B., Drouin J., Lefkowitz R. J., Labrie F. Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem. 1978 Apr 10;253(7):2244–2253. [PubMed] [Google Scholar]
- Cobbett P., Ingram C. D., Mason W. T. Sodium and potassium currents involved in action potential propagation in normal bovine lactotrophs. J Physiol. 1987 Nov;392:273–299. doi: 10.1113/jphysiol.1987.sp016780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook N. S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci. 1988 Jan;9(1):21–28. doi: 10.1016/0165-6147(88)90238-6. [DOI] [PubMed] [Google Scholar]
- De Camilli P., Macconi D., Spada A. Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature. 1979 Mar 15;278(5701):252–254. doi: 10.1038/278252a0. [DOI] [PubMed] [Google Scholar]
- Drapeau P., Blaustein M. P. Initial release of [3H]dopamine from rat striatal synaptosomes: correlation with calcium entry. J Neurosci. 1983 Apr;3(4):703–713. doi: 10.1523/JNEUROSCI.03-04-00703.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enjalbert A., Bockaert J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol Pharmacol. 1983 May;23(3):576–584. [PubMed] [Google Scholar]
- Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
- Hermann A., Gorman A. L. Effects of 4-aminopyridine on potassium currents in a molluscan neuron. J Gen Physiol. 1981 Jul;78(1):63–86. doi: 10.1085/jgp.78.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann A., Gorman A. L. Effects of tetraethylammonium on potassium currents in a molluscan neurons. J Gen Physiol. 1981 Jul;78(1):87–110. doi: 10.1085/jgp.78.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hymer W. C., Evans W. H., Kraicer J., Mastro A., Davis J., Griswold E. Enrichment of cell types from the rat adenohypophysis by sedimentation at unit gravity. Endocrinology. 1973 Jan;92(1):275–287. doi: 10.1210/endo-92-1-275. [DOI] [PubMed] [Google Scholar]
- Ingram C. D., Bicknell R. J., Mason W. T. Intracellular recordings from bovine anterior pituitary cells: modulation of spontaneous activity by regulators of prolactin secretion. Endocrinology. 1986 Dec;119(6):2508–2518. doi: 10.1210/endo-119-6-2508. [DOI] [PubMed] [Google Scholar]
- Iorio L. C., Barnett A., Leitz F. H., Houser V. P., Korduba C. A. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther. 1983 Aug;226(2):462–468. [PubMed] [Google Scholar]
- Israel J. M., Kirk C., Vincent J. D. Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J Physiol. 1987 Sep;390:1–22. doi: 10.1113/jphysiol.1987.sp016682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kebabian J. W., Calne D. B. Multiple receptors for dopamine. Nature. 1979 Jan 11;277(5692):93–96. doi: 10.1038/277093a0. [DOI] [PubMed] [Google Scholar]
- Malgaroli A., Vallar L., Elahi F. R., Pozzan T., Spada A., Meldolesi J. Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells. Evidence of a dual mechanism of action. J Biol Chem. 1987 Oct 15;262(29):13920–13927. [PubMed] [Google Scholar]
- Memo M., Carboni E., Trabucchi M., Carruba M. O., Spano P. F. Dopamine inhibition of neurotensin-induced increase in Ca2+ influx into rat pituitary cells. Brain Res. 1985 Nov 18;347(2):253–257. doi: 10.1016/0006-8993(85)90184-2. [DOI] [PubMed] [Google Scholar]
- Memo M., Castelletti L., Missale C., Spano P. F. Stimulation of dopamine D-2 receptors increases potassium permeability in mammotrophs. Eur J Pharmacol. 1987 Jul 23;139(3):361–362. doi: 10.1016/0014-2999(87)90597-8. [DOI] [PubMed] [Google Scholar]
- Memo M., Castelletti L., Missale C., Valerio A., Carruba M., Spano P. F. Dopaminergic inhibition of prolactin release and calcium influx induced by neurotensin in anterior pituitary is independent of cyclic AMP system. J Neurochem. 1986 Dec;47(6):1689–1695. doi: 10.1111/j.1471-4159.1986.tb13075.x. [DOI] [PubMed] [Google Scholar]
- Memo M., Missale C., Carruba M. O., Spano P. F. Pharmacology and biochemistry of dopamine receptors in the central nervous system and peripheral tissue. J Neural Transm Suppl. 1986;22:19–32. [PubMed] [Google Scholar]
- Onali P., Schwartz J. P., Costa E. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6531–6534. doi: 10.1073/pnas.78.10.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen O. H., Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature. 1984 Feb 23;307(5953):693–696. doi: 10.1038/307693a0. [DOI] [PubMed] [Google Scholar]
- Pugh M. T., O'Boyle K. M., Molloy A. G., Waddington J. L. Effects of the putative D-1 antagonist SCH 23390 on stereotyped behaviour induced by the D-2 agonist RU24213. Psychopharmacology (Berl) 1985;87(3):308–312. doi: 10.1007/BF00432713. [DOI] [PubMed] [Google Scholar]
- Quast U. Effect of the K+ efflux stimulating vasodilator BRL 34915 on 86Rb+ efflux and spontaneous activity in guinea-pig portal vein. Br J Pharmacol. 1987 Jul;91(3):569–578. doi: 10.1111/j.1476-5381.1987.tb11250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saith S., Bicknell R. J., Schofield J. G. Inhibition by dopamine of 86Rb efflux and hormone secretion from bovine anterior pituitary cells perifused in the presence of acetylcholine or TRH. FEBS Lett. 1982 Nov 1;148(1):27–30. doi: 10.1016/0014-5793(82)81235-0. [DOI] [PubMed] [Google Scholar]
- Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
- Seeman P. Brain dopamine receptors. Pharmacol Rev. 1980 Sep;32(3):229–313. [PubMed] [Google Scholar]
- Stoof J. C., Kebabian J. W. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature. 1981 Nov 26;294(5839):366–368. doi: 10.1038/294366a0. [DOI] [PubMed] [Google Scholar]
- Sundström S., Danielsson A., Henriksson R., Lindström P. Characterization of dopamine-induced potassium efflux in rat parotid acinar cells. Eur J Pharmacol. 1988 Jan 12;145(2):123–131. doi: 10.1016/0014-2999(88)90223-3. [DOI] [PubMed] [Google Scholar]
- Thesleff S. Aminopyridines and synaptic transmission. Neuroscience. 1980;5(8):1413–1419. doi: 10.1016/0306-4522(80)90002-0. [DOI] [PubMed] [Google Scholar]
- Trabucchi M., Longoni R., Fresia P., Spano P. F. Sulpiride: a study of the effects on dopamine receptors in rat neostriatum and limbic forebrain. Life Sci. 1975 Nov 15;17(10):1551–1556. doi: 10.1016/0024-3205(75)90176-9. [DOI] [PubMed] [Google Scholar]
- Tsuruta K., Frey E. A., Grewe C. W., Cote T. E., Eskay R. L., Kebabian J. W. Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor. Nature. 1981 Jul 30;292(5822):463–465. doi: 10.1038/292463a0. [DOI] [PubMed] [Google Scholar]
- Weir S. W., Weston A. H. The effects of BRL 34915 and nicorandil on electrical and mechanical activity and on 86Rb efflux in rat blood vessels. Br J Pharmacol. 1986 May;88(1):121–128. doi: 10.1111/j.1476-5381.1986.tb09478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S., Sebben M., Garcia-Sainz J. A., Bockaert J. D2-dopamine receptor-mediated inhibition of cyclic AMP formation in striatal neurons in primary culture. Mol Pharmacol. 1985 Jun;27(6):595–599. [PubMed] [Google Scholar]
