Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Mar;410:395–410. doi: 10.1113/jphysiol.1989.sp017540

Interactions between hypoxia, acetylcholine and dopamine in the carotid body of rabbit and cat.

J Ponte 1, C L Sadler 1
PMCID: PMC1190486  PMID: 2507778

Abstract

1. Acetylcholine (ACh) and dopamine (DA) were either infused into the carotid artery or applied directly to the surface of the carotid body of twenty-six rabbits and fifteen cats. Afferent discharge of single chemoreceptor units was recorded at a range of Pa,O2 (arterial O2 pressure) values during drug administration. 2. There were no observable systemic effects of either drug when applied to the surface of the carotid body. 3. Acetylcholine tended to depress afferent discharge when applied to the surface of the rabbit carotid body or when infused into the carotid sinus. In the cat, intracarotid and surface application of ACh had mild and inconsistent effects. DA consistently depressed discharge in both species independent of the route of administration. Antagonists of ACh and DA failed to abolish the chemoreceptor response to hypoxia. 4. The changes in afferent discharge elicited by all drugs were small compared with the range of discharge rates attained with physiological stimuli. The effects of ACh and DA were more marked in hyperoxia than in hypoxia for both routes of administration, disappearing at Pa,O2 values close to 20 Torr (7.5 Torr = 1 kPa). 5. A role for DA in the maintenance of the hypoxic response was investigated in six rabbits. After 15 min of hypoxia (Pa,O2 = 21.8 +/- 1.1 Torr; mean +/- S.E.M.) the discharge of single chemoreceptor fibres adapted moderately (to 79.3 +/- 5.2% of maximum discharge). Following administration of domperidone or haloperidol (1.0-5.3 mg kg-1, I.V.) the same fibres responded with equal magnitude to the onset of the hypoxic stimulus but showed a significantly larger adaptation (to 48.5 +/- 4.4%). 6. It is concluded that endogenous ACh and DA are unlikely to mediate the transduction process of the carotid body, but DA may play a role in preventing adaptation to a prolonged hypoxic stimulus.

Full text

PDF
395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biscoe T. J., Bradley G. W., Purves M. J. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J Physiol. 1970 May;208(1):99–120. doi: 10.1113/jphysiol.1970.sp009108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biscoe T. J. Carotid body: structure and function. Physiol Rev. 1971 Jul;51(3):437–495. doi: 10.1152/physrev.1971.51.3.437. [DOI] [PubMed] [Google Scholar]
  3. Bisgard G. E., Mitchell R. A., Herbert D. A. Effects of dopamine, norepinephrine and 5-hydroxytryptamine on the carotid body of the dog. Respir Physiol. 1979 May;37(1):61–80. doi: 10.1016/0034-5687(79)90092-6. [DOI] [PubMed] [Google Scholar]
  4. Chiocchio S. R., Biscardi A. M., Tramezzani J. H. Catecholamines in the carotid body of the cat. Nature. 1966 Nov 19;212(5064):834–835. doi: 10.1038/212834a0. [DOI] [PubMed] [Google Scholar]
  5. DOUGLAS W. W., RITCHIE J. M. Mammalian nonmyelinated nerve fibers. Physiol Rev. 1962 Apr;42:297–334. doi: 10.1152/physrev.1962.42.2.297. [DOI] [PubMed] [Google Scholar]
  6. Docherty R. J., McQueen D. S. Inhibitory action of dopamine on cat carotid chemoreceptors. J Physiol. 1978 Jun;279:425–436. doi: 10.1113/jphysiol.1978.sp012354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Docherty R. J., McQueen D. S. The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J Physiol. 1979 Mar;288:411–423. [PMC free article] [PubMed] [Google Scholar]
  8. Docherty R. J. The effects of benztropine and pargyline on the response of cat carotid chemoreceptors to sodium cyanide, acetylcholine and dopamine [proceedings]. J Physiol. 1979 Jul;292:53P–53P. [PMC free article] [PubMed] [Google Scholar]
  9. Fidone S., Gonzalez C., Yoshizaki K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol. 1982 Dec;333:93–110. doi: 10.1113/jphysiol.1982.sp014441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Folgering H., Ponte J., Sadig T. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J Physiol. 1982 Apr;325:1–21. doi: 10.1113/jphysiol.1982.sp014131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LANDGREN S., LILJESTRAND G., ZOTTERMAN Y. The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta Physiol Scand. 1952 Sep 10;26(2-3):264–290. doi: 10.1111/j.1748-1716.1952.tb00909.x. [DOI] [PubMed] [Google Scholar]
  12. Lahiri S., Nishino T., Mokashi A., Mulligan E. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jul;49(1):45–51. doi: 10.1152/jappl.1980.49.1.45. [DOI] [PubMed] [Google Scholar]
  13. Lahiri S., Pokorski M., Davies R. O. Augmentation of carotid body chemoreceptor responses by isoproterenol in the cat. Respir Physiol. 1981 Jun;44(3):351–364. doi: 10.1016/0034-5687(81)90029-3. [DOI] [PubMed] [Google Scholar]
  14. Lahiri S. Role of arterial O2 flow in peripheral chemoreceptor excitation. Fed Proc. 1980 Jul;39(9):2648–2652. [PubMed] [Google Scholar]
  15. Llados F., Zapata P. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J Physiol. 1978 Jan;274:501–509. doi: 10.1113/jphysiol.1978.sp012163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Llados F., Zapata P. Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J Physiol. 1978 Jan;274:487–499. doi: 10.1113/jphysiol.1978.sp012162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McQueen D. S. A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat. J Physiol. 1977 Dec;273(2):515–532. doi: 10.1113/jphysiol.1977.sp012107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Monti-Bloch L., Eyzaguirre C. A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors. Brain Res. 1980 Jul 14;193(2):449–470. doi: 10.1016/0006-8993(80)90177-8. [DOI] [PubMed] [Google Scholar]
  19. Monti-Bloch L., Stensaas L. J., Eyzaguirre C. Carotid body grafts induce chemosensitivity in muscle nerve fibers of the cat. Brain Res. 1983 Jun 27;270(1):77–92. doi: 10.1016/0006-8993(83)90793-x. [DOI] [PubMed] [Google Scholar]
  20. Obeso A., Almaraz L., Gonzalez C. Correlation between adenosine triphosphate levels, dopamine release and electrical activity in the carotid body: support for the metabolic hypothesis of chemoreception. Brain Res. 1985 Nov 25;348(1):64–68. doi: 10.1016/0006-8993(85)90360-9. [DOI] [PubMed] [Google Scholar]
  21. Zapata P. Effects of dopamine on carotid chemo- and baroreceptors in vitro. J Physiol. 1975 Jan;244(1):235–251. doi: 10.1113/jphysiol.1975.sp010794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES