Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Apr;411:161–177. doi: 10.1113/jphysiol.1989.sp017566

Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminothalamic cells.

L Y Huang 1
PMCID: PMC1190517  PMID: 2482353

Abstract

1. Single isolated neurones were prepared from the spinal trigeminal nucleus and the dorsal horn of cervical spinal cord of the rat. Spinothalamic and trigeminothalamic neurones were identified using rhodamine-labelled fluorescent latex microspheres. 2. Calcium currents in these cells were examined by the whole-cell patch-clamp technique. Three types of calcium currents, transient (T) and slow inactivating (N and L) types, were identified by their sensitivities to inorganic blockers and rates of inactivation at two different holding potentials (temperature = 21-25 degrees C). 3. From a holding potential of -100 mV, the ICa,T began to activate at -60 mV. The current reached its maximum amplitude around -30 mV and was inactivated completely when the cell was held more positive than -60 mV. The time constant of the inactivation was between 10 and 50 ms. 4. The slow inactivating component of ICa was dissociated into two components by eliciting ICa from two holding potentials of -100 and of -40 mV. The current (ICa,L) activated from -40 mV was characterized by positive activation potentials and a very slow inactivation (time constant, 700-4000 ms). The current (ICa,N) elicited from a holding potential of -100 mV started to activate at -30 mV and inactivated slowly with time constants ranging between 400 and 1000 ms. 5. Compared with the ICa,T, the inactivation curve for ICa,N was shifted about 30 mV in the depolarizing direction. ICa,N inactivated over a broader range of potentials, and its inactivation and activation curves overlapped. 6. Cadmium blocked ICa,T at a concentration 24 times higher than that which was needed to block slow inactivating currents. The apparent dissociation constant of nickel for ICa,T is twofold lower than that for the slow inactivating currents. 7. Nimodipine (2 microM) decreased the slow inactivating currents, but had no effect on ICa,T. (-)-Bay K 8644 (200 nM) increased both ICa,N and ICa,L and shifted the current activation in the hyperpolarizing direction. This result is different from that obtained in sensory and sympathetic neurones in which ICa,N is insensitive to Bay K 8644.

Full text

PDF
161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D., Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2518–2522. doi: 10.1073/pnas.84.8.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bossu J. L., Feltz A., Thomann J. M. Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch. 1985 Apr;403(4):360–368. doi: 10.1007/BF00589247. [DOI] [PubMed] [Google Scholar]
  3. Byerly L., Meech R., Moody W., Jr Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jun;351:199–216. doi: 10.1113/jphysiol.1984.sp015241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carbone E., Lux H. D. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9;310(5977):501–502. doi: 10.1038/310501a0. [DOI] [PubMed] [Google Scholar]
  5. Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
  6. Fedulova S. A., Kostyuk P. G., Veselovsky N. S. Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol. 1985 Feb;359:431–446. doi: 10.1113/jphysiol.1985.sp015594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox A. P., Nowycky M. C., Tsien R. W. Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol. 1987 Dec;394:173–200. doi: 10.1113/jphysiol.1987.sp016865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray R., Johnston D. Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol. 1985 Jul;54(1):134–142. doi: 10.1152/jn.1985.54.1.134. [DOI] [PubMed] [Google Scholar]
  11. Gross R. A., Macdonald R. L. Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5469–5473. doi: 10.1073/pnas.84.15.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  14. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  15. Huang L. Y., Carlton S. M., Willis W. D. Identification of spinothalamic tract cells in fresh, unfixed rat spinal cord. J Neurosci Methods. 1985 Jul;14(2):91–96. doi: 10.1016/0165-0270(85)90119-0. [DOI] [PubMed] [Google Scholar]
  16. Huang L. Y. Electrical properties of acutely isolated, identified rat spinal dorsal horn projection neurons. Neurosci Lett. 1987 Dec 4;82(3):267–272. doi: 10.1016/0304-3940(87)90267-9. [DOI] [PubMed] [Google Scholar]
  17. Kay A. R., Miles R., Wong R. K. Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J Neurosci. 1986 Oct;6(10):2915–2920. doi: 10.1523/JNEUROSCI.06-10-02915.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kay A. R., Wong R. K. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods. 1986 May;16(3):227–238. doi: 10.1016/0165-0270(86)90040-3. [DOI] [PubMed] [Google Scholar]
  19. Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. Y., Tsien R. W. Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2398–2402. doi: 10.1073/pnas.85.7.2398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matteson D. R., Armstrong C. M. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 1986 Jan;87(1):161–182. doi: 10.1085/jgp.87.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Narahashi T., Tsunoo A., Yoshii M. Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol. 1987 Feb;383:231–249. doi: 10.1113/jphysiol.1987.sp016406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  23. Nowycky M. C., Fox A. P., Tsien R. W. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2178–2182. doi: 10.1073/pnas.82.7.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  25. Ruda M. A. Opiates and pain pathways: demonstration of enkephalin synapses on dorsal horn projection neurons. Science. 1982 Mar 19;215(4539):1523–1525. doi: 10.1126/science.6121374. [DOI] [PubMed] [Google Scholar]
  26. Sternweis P. C., Gilman A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4888–4891. doi: 10.1073/pnas.79.16.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willcockson W. S., Chung J. M., Hori Y., Lee K. H., Willis W. D. Effects of iontophoretically released peptides on primate spinothalamic tract cells. J Neurosci. 1984 Mar;4(3):741–750. doi: 10.1523/JNEUROSCI.04-03-00741.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES