Abstract
1. The effects of botulinum toxin (BoTx) types A and D on spontaneous and evoked phasic transmitter release were studied in the isolated extensor digitorum longus muscle of the rat or the levator auris longus muscle of mice. 2. The toxins were injected subcutaneously into the hindleg of adult rats or the dorsal aspect of the neck of mice. At various times after the injection the muscles were removed from the anaesthetized animal and neuromuscular transmission examined in vitro by conventional intracellular techniques. 3. Both toxins reduced spontaneous transmitter release recorded as the frequency of miniature end-plate potentials but BoTx type D was less effective in that respect than the type A toxin. 4. With both toxins the block of evoked phasic transmitter release, recorded as end-plate potentials, was almost complete. As previously reviewed by Simpson (1986) the block produced by BoTx type A was partially reversed by procedures which elevate the intraterminal level of calcium ions. However, in BoTx type D-paralysed muscles such procedures failed to restore phasic transmitter release but caused a period of high-frequency asynchronous transmitter release following each nerve impulse. 5. To investigate if the lack of synchronization of evoked transmitter release observed in BoTx type D-paralysed muscles was due to alterations in presynaptic currents we examined, by perineural recordings, the Na+, fast K+, slow K+, K+-Ca2+-dependent and the Ca2+ currents in BoTx type D-paralysed muscles. These presynaptic currents were not altered as compared to unpoisoned controls. 6. We suggest that there exists a presynaptic process, which in addition to Ca2+ influx participates in transmitter synchronization and which is a main target for BoTx type D action.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambache N. The peripheral action of Cl. botulinum toxin. J Physiol. 1949 Mar 15;108(2):127–141. [PMC free article] [PubMed] [Google Scholar]
- Angaut-Petit D., Molgo J., Connold A. L., Faille L. The levator auris longus muscle of the mouse: a convenient preparation for studies of short- and long-term presynaptic effects of drugs or toxins. Neurosci Lett. 1987 Nov 10;82(1):83–88. doi: 10.1016/0304-3940(87)90175-3. [DOI] [PubMed] [Google Scholar]
- Cull-Candy S. G., Lundh H., Thesleff S. Effects of botulinum toxin on neuromuscular transmission in the rat. J Physiol. 1976 Aug;260(1):177–203. doi: 10.1113/jphysiol.1976.sp011510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyer F., Mallart A., Brigant J. L. Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res. 1983 Jul 4;270(2):373–375. doi: 10.1016/0006-8993(83)90617-0. [DOI] [PubMed] [Google Scholar]
- Dreyer F., Penner R. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J Physiol. 1987 May;386:455–463. doi: 10.1113/jphysiol.1987.sp016544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyer F., Schmitt A. Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch. 1983 Nov;399(3):228–234. doi: 10.1007/BF00656720. [DOI] [PubMed] [Google Scholar]
- Gansel M., Penner R., Dreyer F. Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals. Pflugers Arch. 1987 Aug;409(4-5):533–539. doi: 10.1007/BF00583812. [DOI] [PubMed] [Google Scholar]
- Gundersen C. B., Katz B., Miledi R. The antagonism between botulinum toxin and calcium in motor nerve terminals. Proc R Soc Lond B Biol Sci. 1982 Oct 22;216(1204):369–376. doi: 10.1098/rspb.1982.0080. [DOI] [PubMed] [Google Scholar]
- Habermann E., Dreyer F. Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol. 1986;129:93–179. doi: 10.1007/978-3-642-71399-6_2. [DOI] [PubMed] [Google Scholar]
- Harris A. J., Miledi R. The effect of type D botulinum toxin on frog neuromuscular junctions. J Physiol. 1971 Sep;217(2):497–515. doi: 10.1113/jphysiol.1971.sp009582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauffman J. A., Way J. F., Jr, Siegel L. S., Sellin L. C. Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol Appl Pharmacol. 1985 Jun 30;79(2):211–217. doi: 10.1016/0041-008x(85)90342-4. [DOI] [PubMed] [Google Scholar]
- Kim Y. I., Lømo T., Lupa M. T., Thesleff S. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol. 1984 Nov;356:587–599. doi: 10.1113/jphysiol.1984.sp015484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirsch G. E., Narahashi T. 3,4-diaminopyridine. A potent new potassium channel blocker. Biophys J. 1978 Jun;22(3):507–512. doi: 10.1016/S0006-3495(78)85503-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallart A. Electric current flow inside perineurial sheaths of mouse motor nerves. J Physiol. 1985 Nov;368:565–575. doi: 10.1113/jphysiol.1985.sp015876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki S., Iwasaki M., Sakaguchi G. Clostridium botulinum type D toxin: purification, molecular structure, and some immunological properties. Infect Immun. 1977 Aug;17(2):395–401. doi: 10.1128/iai.17.2.395-401.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohashi Y., Narumiya S. ADP-ribosylation of a Mr 21,000 membrane protein by type D botulinum toxin. J Biol Chem. 1987 Feb 5;262(4):1430–1433. [PubMed] [Google Scholar]
- Rösener S., Chhatwal G. S., Aktories K. Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. FEBS Lett. 1987 Nov 16;224(1):38–42. doi: 10.1016/0014-5793(87)80418-0. [DOI] [PubMed] [Google Scholar]
- Sellin L. C., Thesleff S., Dasgupta B. R. Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta Physiol Scand. 1983;119(2):127–133. doi: 10.1111/j.1748-1716.1983.tb07317.x. [DOI] [PubMed] [Google Scholar]
- Sellin L. C., Thesleff S. Pre- and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol. 1981 Aug;317:487–495. doi: 10.1113/jphysiol.1981.sp013838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L. L. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol. 1986;26:427–453. doi: 10.1146/annurev.pa.26.040186.002235. [DOI] [PubMed] [Google Scholar]
- Thesleff S. Different kinds of acetylcholine release from the motor nerve. Int Rev Neurobiol. 1986;28:59–88. doi: 10.1016/s0074-7742(08)60106-3. [DOI] [PubMed] [Google Scholar]
- Zengel J. E., Magleby K. L. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. J Gen Physiol. 1981 May;77(5):503–529. doi: 10.1085/jgp.77.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
