Abstract
1. Rats underwent either: (1) acute or chronic morphine or naloxone administration; (2) simple morphine withdrawal or naloxone-precipitated withdrawal in morphine-dependent animals; or (3) stress from I.P. administration of hypertonic saline. 2. Quantitative in situ hybridization histochemistry was performed using synthetic oligonucleotide probes for corticotrophin-releasing factor (CRF), vasopressin, pro-opiomelanocortin (POMC), dynorphin, enkephalin and oxytocin mRNAs. The paraventricular and supraoptic nuclei were examined in all studies and the arcuate nucleus and pituitary gland in the acute withdrawal study. 3. Neither acute nor chronic morphine administration altered either (a) hypothalamic parvocellular or magnocellular CRF mRNA, or (b) anterior pituitary or pars intermedia POMC mRNA. 4. Naloxone-precipitated morphine withdrawal resulted in a marked increase in parvocellular (but not magnocellular) CRF mRNA within 4 h and levels remained elevated through 24 h. There was no change in arcuate nucleus or pars intermedia POMC mRNA, but in the anterior pituitary there was a delayed increase, significant at 24 h. 5. Simple morphine withdrawal without the use of naloxone did not result in any change in CRF mRNA but there were increases in magnocellular vasopressin and dynorphin mRNA, presumably related to decreased water intake. 6. Intraperitoneal hypertonic saline stress also resulted in a marked accumulation of both parvocellular CRF and vasopressin mRNA without any concomitant change in magnocellular vasopressin mRNA. Increased translation of CRF mRNA was also evidenced by increased immunoreactive CRF detected by immunocytochemistry.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antoni F. A., Holmes M. C., Kiss J. Z. Pituitary binding of vasopressin is altered by experimental manipulations of the hypothalamo-pituitary-adrenocortical axis in normal as well as homozygous (di/di) Brattleboro rats. Endocrinology. 1985 Oct;117(4):1293–1299. doi: 10.1210/endo-117-4-1293. [DOI] [PubMed] [Google Scholar]
- Antoni F. A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986 Nov;7(4):351–378. doi: 10.1210/edrv-7-4-351. [DOI] [PubMed] [Google Scholar]
- Antoni F. A., Palkovits M., Makara G. B., Linton E. A., Lowry P. J., Kiss J. Z. Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundibular tract. Neuroendocrinology. 1983 Jun;36(6):415–423. doi: 10.1159/000123492. [DOI] [PubMed] [Google Scholar]
- Bicknell R. J., Leng G., Lincoln D. W., Russell J. A. Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment. J Physiol. 1988 Feb;396:297–317. doi: 10.1113/jphysiol.1988.sp016963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckingham J. C., Cooper T. A. Differences in hypothalamo-pituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology. 1984 May;38(5):411–417. doi: 10.1159/000123927. [DOI] [PubMed] [Google Scholar]
- Corticotropin-releasing factor. Proceedings of a conference, February 20-24, 1984 sponsored by the Kroc Foundation. Fed Proc. 1985 Jan;44(1 Pt 2):145–263. [PubMed] [Google Scholar]
- Eckland D. J., Todd K., Lightman S. L. Immunoreactive vasopressin and oxytocin in hypothalamo-hypophysial portal blood of the Brattleboro and Long-Evans rat: effect of adrenalectomy and dexamethasone. J Endocrinol. 1988 Apr;117(1):27–34. doi: 10.1677/joe.0.1170027. [DOI] [PubMed] [Google Scholar]
- GEORGE R., WAY E. L. Studies on the mechanism of pituitary-adrenal activation by morphine. Br J Pharmacol Chemother. 1955 Jun;10(2):260–264. doi: 10.1111/j.1476-5381.1955.tb00092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbs D. M. Inhibition of corticotropin release during hypothermia: the role of corticotropin-releasing factor, vasopressin, and oxytocin. Endocrinology. 1985 Feb;116(2):723–727. doi: 10.1210/endo-116-2-723. [DOI] [PubMed] [Google Scholar]
- Gibbs D. M. Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fed Proc. 1985 Jan;44(1 Pt 2):203–206. [PubMed] [Google Scholar]
- Gillies G. E., Linton E. A., Lowry P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982 Sep 23;299(5881):355–357. doi: 10.1038/299355a0. [DOI] [PubMed] [Google Scholar]
- Gillies G., Lowry P. Corticotrophin releasing factor may be modulated vasopressin. Nature. 1979 Mar 29;278(5703):463–464. doi: 10.1038/278463a0. [DOI] [PubMed] [Google Scholar]
- Hisano S., Tsuruo Y., Katoh S., Daikoku S., Yanaihara N., Shibasaki T. Intragranular colocalization of arginine vasopressin and methionine-enkephalin-octapeptide in CRF-axons in the rat median eminence. Cell Tissue Res. 1987 Sep;249(3):497–507. doi: 10.1007/BF00217321. [DOI] [PubMed] [Google Scholar]
- Höllt V., Haarmann I. Corticotropin-releasing factor differentially regulates proopiomelanocortin messenger ribonucleic acid levels in anterior as compared to intermediate pituitary lobes of rats. Biochem Biophys Res Commun. 1984 Oct 30;124(2):407–415. doi: 10.1016/0006-291x(84)91568-7. [DOI] [PubMed] [Google Scholar]
- Höllt V., Przewłocki R., Haarmann I., Almeida O. F., Kley N., Millan M. J., Herz A. Stress-induced alterations in the levels of messenger RNA coding for proopiomelanocortin and prolactin in rat pituitary. Neuroendocrinology. 1986;43(3):277–282. doi: 10.1159/000124541. [DOI] [PubMed] [Google Scholar]
- Jingami H., Matsukura S., Numa S., Imura H. Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/beta-lipotropin precursor mRNA in the pituitary in rats. Endocrinology. 1985 Oct;117(4):1314–1320. doi: 10.1210/endo-117-4-1314. [DOI] [PubMed] [Google Scholar]
- Kiss J. Z., Mezey E., Skirboll L. Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1854–1858. doi: 10.1073/pnas.81.6.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koenig J. I., Meltzer H. Y., Devane G. D., Gudelsky G. A. The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology. 1986 Jun;118(6):2534–2539. doi: 10.1210/endo-118-6-2534. [DOI] [PubMed] [Google Scholar]
- Lightman S. L., Young W. S., 3rd Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Nature. 1987 Aug 13;328(6131):643–645. doi: 10.1038/328643a0. [DOI] [PubMed] [Google Scholar]
- Lightman S. L., Young W. S., 3rd Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat. J Physiol. 1987 Dec;394:23–39. doi: 10.1113/jphysiol.1987.sp016858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lotti V. J., Kokka N., George R. Pituitary-adrenal activation following intrahypothalamic microinjection of morphine. Neuroendocrinology. 1969;4(6):326–332. doi: 10.1159/000121765. [DOI] [PubMed] [Google Scholar]
- McMillan D. E., Leander J. D., Wilson T. W., Wallace S. C., Fix T., Redding S., Turk R. T. Oral ingestion of narcotic analgesics by rats. J Pharmacol Exp Ther. 1976 Feb;196(2):269–279. [PubMed] [Google Scholar]
- Plotsky P. M., Bruhn T. O., Vale W. Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology. 1985 Jul;117(1):323–329. doi: 10.1210/endo-117-1-323. [DOI] [PubMed] [Google Scholar]
- Plotsky P. M., Vale W. Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology. 1984 Jan;114(1):164–169. doi: 10.1210/endo-114-1-164. [DOI] [PubMed] [Google Scholar]
- Sawchenko P. E., Swanson L. W., Vale W. W. Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1883–1887. doi: 10.1073/pnas.81.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stolerman I. P., Kumar R. Preferences for morphine in rats: validation of an experimental model of dependence. Psychopharmacologia. 1970;17(2):137–150. doi: 10.1007/BF00402704. [DOI] [PubMed] [Google Scholar]
- Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 1983;36(3):165–186. doi: 10.1159/000123454. [DOI] [PubMed] [Google Scholar]
- Todd K., Lightman S. L. Vasopressin activation of phosphatidylinositol metabolism in rat anterior pituitary in vitro and its modification by changes in the hypothalamo-pituitary-adrenal axis. Neuroendocrinology. 1987 Mar;45(3):212–218. doi: 10.1159/000124728. [DOI] [PubMed] [Google Scholar]
- Tramu G., Croix C., Pillez A. Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material. Immunohistochemical demonstration in adrenalectomized guinea pigs and rats. Neuroendocrinology. 1983 Dec;37(6):467–469. doi: 10.1159/000123595. [DOI] [PubMed] [Google Scholar]
- Vale W., Vaughan J., Yamamoto G., Bruhn T., Douglas C., Dalton D., Rivier C., Rivier J. Assay of corticotropin releasing factor. Methods Enzymol. 1983;103:565–577. doi: 10.1016/s0076-6879(83)03040-2. [DOI] [PubMed] [Google Scholar]
- Whitnall M. H., Mezey E., Gainer H. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature. 1985 Sep 19;317(6034):248–250. doi: 10.1038/317248a0. [DOI] [PubMed] [Google Scholar]
- Wolfson B., Manning R. W., Davis L. G., Arentzen R., Baldino F., Jr Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature. 1985 May 2;315(6014):59–61. doi: 10.1038/315059a0. [DOI] [PubMed] [Google Scholar]
- Yates F. E., Russell S. M., Dallman M. F., Hodge G. A., McCann S. M., Dhariwal A. P. Potentiation by vasopressin of corticotropin release induced by corticotropin-releasing factor. Endocrinology. 1971 Jan;88(1):3–15. doi: 10.1210/endo-88-1-3. [DOI] [PubMed] [Google Scholar]
- Young W. S., 3rd, Bonner T. I., Brann M. R. Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9827–9831. doi: 10.1073/pnas.83.24.9827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young W. S., 3rd, Mezey E., Siegel R. E. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett. 1986 Oct 8;70(2):198–203. doi: 10.1016/0304-3940(86)90463-5. [DOI] [PubMed] [Google Scholar]