Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Sep;403:559–575. doi: 10.1113/jphysiol.1988.sp017264

Luminal propionate-induced secretory response in the rat distal colon in vitro.

T Yajima 1
PMCID: PMC1190728  PMID: 2473196

Abstract

1. The stimulatory action of propionate on colonic electrolyte transport and involvement of the enteric reflex in this was studied in vitro using an Ussing chamber in the rat. The short-circuit current (Isc) and bidirectional fluxes of Na+ and Cl- were measured. Mucosa-submucosa preparations, containing the submucosal nerve, from the distal colon were used in most cases. 2. Mucosal application of propionate caused transient increases in the transmural potential difference, with the mucosal side negative, Isc and conductance. Serosal application of the acid had no effect. 3. Adaptation of the Isc response occurred when the acid was applied to the bathing solution cumulatively without washing out the first dose. If tissues were washed and held more than 20 min before the next application, the response was almost completely restored. 4. The increase in Isc in response to propionate was concentration dependent, with a 50% effective concentration of approximately 7 x 10(-5) M. 5. Two other short-chain fatty acids (SCFAs), n-butyrate and n-valerate, but not acetate, increased Isc when added to the mucosal bathing solution. 6. Bumetanide (3 x 10(-5) M) and the serosal chloride-free condition, but not amiloride (10(-4) M), inhibited the responses of Isc to propionate. Propionate-stimulated Cl- secretion resulted mainly from an increase in unidirectional serosal-to-mucosal Cl- movement. Propionate did not affect the Na+ flux. 7. Tetrodotoxin (10(-7) M), somatostatin (10(-7) M) and hexamethonium (10(-4) M) inhibited the propionate-evoked increase in Isc by 40, 70 and 30%, respectively. 8. Atropine (10(-5) M) also inhibited the Isc-increase response to propionate more than 90%. 9. Pre-treatment (2 min) of the mucosal surface with procaine (5 x 10(-4) M) inhibited the propionate-evoked increase in Isc by 90%. 10. The results suggest that luminal propionate transiently stimulated the colonic chloride secretory response that is not due to direct action on colonocytes, but due in large part to release of acetylcholine at neuro-colonocyte junctions, probably via an enteric reflex involving a mucosal sensory mechanism, cholinergic motor nerves and submucosal ganglia.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres H., Rock R., Bridges R. J., Rummel W., Schreiner J. Submucosal plexus and electrolyte transport across rat colonic mucosa. J Physiol. 1985 Jul;364:301–312. doi: 10.1113/jphysiol.1985.sp015746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browning J. G., Hardcastle J., Hardcastle P. T., Sanford P. A. The role of acetylcholine in the regulation of ion transport by rat colon mucosa. J Physiol. 1977 Nov;272(3):737–754. doi: 10.1113/jphysiol.1977.sp012070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carey H. V., Cooke H. J., Zafirova M. Mucosal responses evoked by stimulation of ganglion cell somas in the submucosal plexus of the guinea-pig ileum. J Physiol. 1985 Jul;364:69–79. doi: 10.1113/jphysiol.1985.sp015730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassuto J., Jodal M., Lundgren O. The effect of nicotinic and muscarinic receptor blockade on cholera toxin induced intestinal secretion in rats and cats. Acta Physiol Scand. 1982 Apr;114(4):573–577. doi: 10.1111/j.1748-1716.1982.tb07026.x. [DOI] [PubMed] [Google Scholar]
  5. Cassuto J., Jodal M., Tuttle R., Lundgren O. 5-hydroxytryptamine and cholera secretion. Physiological and pharmacological studies in cats and rats. Scand J Gastroenterol. 1982 Aug;17(5):695–703. doi: 10.3109/00365528209181081. [DOI] [PubMed] [Google Scholar]
  6. Cassuto J., Siewert A., Jodal M., Lundgren O. The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Physiol Scand. 1983 Feb;117(2):195–202. doi: 10.1111/j.1748-1716.1983.tb07197.x. [DOI] [PubMed] [Google Scholar]
  7. Cooke H. J. Neurobiology of the intestinal mucosa. Gastroenterology. 1986 Apr;90(4):1057–1081. doi: 10.1016/0016-5085(86)90889-9. [DOI] [PubMed] [Google Scholar]
  8. Cooke H. J., Shonnard K., Wood J. D. Effects of neuronal stimulation on mucosal transport in guinea pig ileum. Am J Physiol. 1983 Aug;245(2):G290–G296. doi: 10.1152/ajpgi.1983.245.2.G290. [DOI] [PubMed] [Google Scholar]
  9. Eklund S., Fahrenkrug J., Jodal M., Lundgren O., Schaffalitzky de Muckadell O. B., Sjöqvist A. Vasoactive intestinal polypeptide, 5-hydroxytryptamine and reflex hyperaemia in the small intestine of the cat. J Physiol. 1980 May;302:549–557. doi: 10.1113/jphysiol.1980.sp013260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eklund S., Jodal M., Lundgren O. The enteric nervous system participates in the secretory response to the heat stable enterotoxins of Escherichia coli in rats and cats. Neuroscience. 1985 Feb;14(2):673–681. doi: 10.1016/0306-4522(85)90318-5. [DOI] [PubMed] [Google Scholar]
  11. Fujita T., Kobayashi S. Structure and function of gut endocrine cells. Int Rev Cytol Suppl. 1977;(6):187–233. [PubMed] [Google Scholar]
  12. Hiji Y., Miyoshi M., Ichikawa O., Kasagi T., Imoto T. Enhancement of local anaesthesia action by organic acid salts. (I): Possible change of excitability in nerve fibre membrane. Arch Int Physiol Biochim. 1987 Jun;95(2):113–120. doi: 10.3109/13813458709104523. [DOI] [PubMed] [Google Scholar]
  13. Hubel K. A. Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol. 1985 Mar;248(3 Pt 1):G261–G271. doi: 10.1152/ajpgi.1985.248.3.G261. [DOI] [PubMed] [Google Scholar]
  14. Hubel K. A., Renquist K., Shirazi S. Ion transport in human cecum, transverse colon, and sigmoid colon in vitro. Baseline and response to electrical stimulation of intrinsic nerves. Gastroenterology. 1987 Feb;92(2):501–507. doi: 10.1016/0016-5085(87)90148-x. [DOI] [PubMed] [Google Scholar]
  15. Hubel K. A. The effects of electrical field stimulation and tetrodotoxin on ion transport by the isolated rabbit ileum. J Clin Invest. 1978 Nov;62(5):1039–1047. doi: 10.1172/JCI109208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karlström L., Cassuto J., Jodal M., Lundgren O. Involvement of the enteric nervous system in the intestinal secretion induced by sodium deoxycholate and sodium ricinoleate. Scand J Gastroenterol. 1986 Apr;21(3):331–340. doi: 10.3109/00365528609003083. [DOI] [PubMed] [Google Scholar]
  17. Karlström L., Cassuto J., Jodal M., Lundgren O. The importance of the enteric nervous system for the bile-salt-induced secretion in the small intestine of the rat. Scand J Gastroenterol. 1983 Jan;18(1):117–123. doi: 10.3109/00365528309181570. [DOI] [PubMed] [Google Scholar]
  18. Keast J. R., Furness J. B., Costa M. Effects of noradrenaline and somatostatin on basal and stimulated mucosal ion transport in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol. 1986 Aug;333(4):393–399. doi: 10.1007/BF00500015. [DOI] [PubMed] [Google Scholar]
  19. Kuwahara A., Bowen S., Wang J., Condon C., Cooke H. J. Epithelial responses evoked by stimulation of submucosal neurons in guinea pig distal colon. Am J Physiol. 1987 May;252(5 Pt 1):G667–G674. doi: 10.1152/ajpgi.1987.252.5.G667. [DOI] [PubMed] [Google Scholar]
  20. Matsuo Y., Seki A. The coordination of gastrointestinal hormones and the autonomic nerves. Am J Gastroenterol. 1978 Jan;69(1):21–50. [PubMed] [Google Scholar]
  21. Rangachari P. K., McWade D. Epithelial and mucosal preparations of canine proximal colon in ussing chambers: comparison of responses. Life Sci. 1986 May 5;38(18):1641–1652. doi: 10.1016/0024-3205(86)90408-x. [DOI] [PubMed] [Google Scholar]
  22. Sakata T. Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. J Nutr Sci Vitaminol (Tokyo) 1986 Aug;32(4):355–362. doi: 10.3177/jnsv.32.355. [DOI] [PubMed] [Google Scholar]
  23. Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr. 1987 Jul;58(1):95–103. doi: 10.1079/bjn19870073. [DOI] [PubMed] [Google Scholar]
  24. Sakata T., Yajima T. Influence of short chain fatty acids on the epithelial cell division of digestive tract. Q J Exp Physiol. 1984 Jul;69(3):639–648. doi: 10.1113/expphysiol.1984.sp002850. [DOI] [PubMed] [Google Scholar]
  25. Wu Z. C., Kisslinger S. D., Gaginella T. S. Functional evidence for the presence of cholinergic nerve endings in the colonic mucosa of the rat. J Pharmacol Exp Ther. 1982 Jun;221(3):664–669. [PubMed] [Google Scholar]
  26. Yajima T. Contractile effect of short-chain fatty acids on the isolated colon of the rat. J Physiol. 1985 Nov;368:667–678. doi: 10.1113/jphysiol.1985.sp015882. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES