Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Oct;404:1–29. doi: 10.1113/jphysiol.1988.sp017275

Capillary permeability and how it may change.

C C Michel 1
PMCID: PMC1190811  PMID: 3075669

Full text

PDF
i3

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Areekul S. Reflection coefficients of neutral and sulphate-substituted dextran molecules in the isolated perfused rabbit ear. Acta Soc Med Ups. 1969;74(3-4):129–138. [PubMed] [Google Scholar]
  2. Arfors K. E., Rutili G., Svensjö E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl. 1979;463:93–103. [PubMed] [Google Scholar]
  3. Barcroft H. Review lecture. Bayliss-Starling Memorial Lecture 1976. Lymph formation by secretion or filtration? J Physiol. 1976 Aug;260(1):1–20. doi: 10.1113/jphysiol.1976.sp011500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker C. G., Nachman R. L. Contractile proteins of endothelial cells, platelets and smooth muscle. Am J Pathol. 1973 Apr;71(1):1–22. [PMC free article] [PubMed] [Google Scholar]
  5. Bundgaard M., Frøkjaer-Jensen J., Crone C. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6439–6442. doi: 10.1073/pnas.76.12.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bundgaard M. The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultrastruct Res. 1984 Jul;88(1):1–17. doi: 10.1016/s0022-5320(84)90177-1. [DOI] [PubMed] [Google Scholar]
  7. Caldwell P. R., Brentjens J. R., Camussi G., Andres G. In vivo interaction of antibodies with cell surface proteins used as antigens. Tissue Cell. 1986;18(6):809–816. doi: 10.1016/0040-8166(86)90039-x. [DOI] [PubMed] [Google Scholar]
  8. Clementi F., Palade G. E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol. 1969 Apr;41(1):33–58. doi: 10.1083/jcb.41.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clough G., Michel C. C., Phillips M. E. Inflammatory changes in permeability and ultrastructure of single vessels in the frog mesenteric microcirculation. J Physiol. 1988 Jan;395:99–114. doi: 10.1113/jphysiol.1988.sp016910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clough G., Michel C. C. The role of vesicles in the transport of ferritin through frog endothelium. J Physiol. 1981 Jun;315:127–142. doi: 10.1113/jphysiol.1981.sp013737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clough G. The steady-state transport of cationized ferritin by endothelial cell vesicles. J Physiol. 1982 Jul;328:389–401. doi: 10.1113/jphysiol.1982.sp014272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crone C., Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol. 1981 Apr;77(4):349–371. doi: 10.1085/jgp.77.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crone C., Frøkjaer-Jensen J., Friedman J. J., Christensen O. The permeability of single capillaries to potassium ions. J Gen Physiol. 1978 Feb;71(2):195–220. doi: 10.1085/jgp.71.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crone C., Olesen S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 1982 Jun 3;241(1):49–55. doi: 10.1016/0006-8993(82)91227-6. [DOI] [PubMed] [Google Scholar]
  15. Curry F. E. Antipyrine and aminopyrine permeability of individually perfused frog capillaries. Am J Physiol. 1981 Apr;240(4):H597–H605. doi: 10.1152/ajpheart.1981.240.4.H597. [DOI] [PubMed] [Google Scholar]
  16. Curry F. E. Determinants of capillary permeability: a review of mechanisms based on single capillary studies in the frog. Circ Res. 1986 Oct;59(4):367–380. doi: 10.1161/01.res.59.4.367. [DOI] [PubMed] [Google Scholar]
  17. Curry F. E., Frøkjaer-Jensen J. Water flow across the walls of single muscle capillaries in the frog, Rana pipiens. J Physiol. 1984 May;350:293–307. doi: 10.1113/jphysiol.1984.sp015202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Curry F. E., Huxley V. H., Adamson R. H. Permeability of single capillaries to intermediate-sized colored solutes. Am J Physiol. 1983 Sep;245(3):H495–H505. doi: 10.1152/ajpheart.1983.245.3.H495. [DOI] [PubMed] [Google Scholar]
  19. Curry F. E., Michel C. C. A fiber matrix model of capillary permeability. Microvasc Res. 1980 Jul;20(1):96–99. doi: 10.1016/0026-2862(80)90024-2. [DOI] [PubMed] [Google Scholar]
  20. Curry F. E., Michel C. C., Mason J. C. Osmotic reflextion coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery. J Physiol. 1976 Oct;261(2):319–336. doi: 10.1113/jphysiol.1976.sp011561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Curry F. E., Michel C. C., Phillips M. E. Effect of albumin on the osmotic pressure exerted by myoglobin across capillary walls in frog mesentery. J Physiol. 1987 Jun;387:69–82. doi: 10.1113/jphysiol.1987.sp016563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Curry F. E. Permeability coefficients of the capillary wall to low molecular weight hydrophilic solutes measured in single perfused capillaries of frog mesentery. Microvasc Res. 1979 May;17(3 Pt 1):290–308. doi: 10.1016/s0026-2862(79)80005-9. [DOI] [PubMed] [Google Scholar]
  23. Danielli J. F. Capillary permeability and oedema in the perfused frog. J Physiol. 1940 Mar 14;98(1):109–129. doi: 10.1113/jphysiol.1940.sp003837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Drenckhahn D., Wagner J. Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J Cell Biol. 1986 May;102(5):1738–1747. doi: 10.1083/jcb.102.5.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Drinker C. K. The permeability and diameter of the capillaries in the web of the brown frog (R. temporaria) when perfused with solutions containing pituitary extract and horse serum. J Physiol. 1927 Aug 8;63(3):249–269. doi: 10.1113/jphysiol.1927.sp002401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fried T. A., McCoy R. N., Osgood R. W., Stein J. H. Effect of albumin on glomerular ultrafiltration coefficient in isolated perfused dog glomerulus. Am J Physiol. 1986 May;250(5 Pt 2):F901–F906. doi: 10.1152/ajprenal.1986.250.5.F901. [DOI] [PubMed] [Google Scholar]
  27. Haraldsson B., Rippe B. Orosomucoid as one of the serum components contributing to normal capillary permselectivity in rat skeletal muscle. Acta Physiol Scand. 1987 Jan;129(1):127–135. doi: 10.1111/j.1748-1716.1987.tb08047.x. [DOI] [PubMed] [Google Scholar]
  28. Haraldsson B., Rippe B. Serum factors other than albumin are needed for the maintenance of normal capillary permselectivity in rat hindlimb muscle. Acta Physiol Scand. 1985 Apr;123(4):427–436. doi: 10.1111/j.1748-1716.1985.tb07609.x. [DOI] [PubMed] [Google Scholar]
  29. Huxley V. H., Curry F. E. Albumin modulation of capillary permeability: test of an adsorption mechanism. Am J Physiol. 1985 Feb;248(2 Pt 2):H264–H273. doi: 10.1152/ajpheart.1985.248.2.H264. [DOI] [PubMed] [Google Scholar]
  30. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  31. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. LANDIS E. M. HETEROPOROSITY OF THE CAPILLARY WALL AS INDICATED BY CINEMATOGRAPHIC ANALYSIS OF THE PASSAGE OF DYES. Ann N Y Acad Sci. 1964 Aug 27;116:765–773. doi: 10.1111/j.1749-6632.1964.tb52544.x. [DOI] [PubMed] [Google Scholar]
  33. Levick J. R., Michel C. C. A densitometric method for determining the filtration coefficients of single capillaries in the frog mesentery. Microvasc Res. 1977 Mar;13(2):141–151. doi: 10.1016/0026-2862(77)90081-4. [DOI] [PubMed] [Google Scholar]
  34. Levick J. R., Michel C. C. The effect of bovine albumin on the permeability of frog mesenteric capillaries. Q J Exp Physiol Cogn Med Sci. 1973 Jan;58(1):87–97. doi: 10.1113/expphysiol.1973.sp002194. [DOI] [PubMed] [Google Scholar]
  35. Levick J. R., Michel C. C. The permeability of individually perfused frog mesenteric capillaries to T1824 and T1824-albumin as evidence for a large pore system. Q J Exp Physiol Cogn Med Sci. 1973 Jan;58(1):67–85. doi: 10.1113/expphysiol.1973.sp002192. [DOI] [PubMed] [Google Scholar]
  36. Levick J. R., Smaje L. H. An analysis of the permeability of a fenestra. Microvasc Res. 1987 Mar;33(2):233–256. doi: 10.1016/0026-2862(87)90020-3. [DOI] [PubMed] [Google Scholar]
  37. Loudon M. F., Michel C. C., White I. F. The labelling of vesicles in frog endothelial cells with ferritin. J Physiol. 1979 Nov;296:97–112. doi: 10.1113/jphysiol.1979.sp012993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Luft J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966 Nov-Dec;25(6):1773–1783. [PubMed] [Google Scholar]
  39. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mann G. E. Alterations of myocardial capillary permeability by albumin in the isolated, perfused rabbit heart. J Physiol. 1981;319:311–323. doi: 10.1113/jphysiol.1981.sp013910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mason J. C., Curry F. E., Michel C. C. The effects of proteins upon the filtration coefficient of individually perfused frog mesenteric capillaries. Microvasc Res. 1977 Mar;13(2):185–202. doi: 10.1016/0026-2862(77)90084-x. [DOI] [PubMed] [Google Scholar]
  43. Mason J. C., Curry F. E., White I. F., Michel C. C. The ultrastructure of frog mesenteric capillaries of known filtration coefficient. Q J Exp Physiol Cogn Med Sci. 1979 Jul;64(3):217–224. doi: 10.1113/expphysiol.1979.sp002474. [DOI] [PubMed] [Google Scholar]
  44. McDonagh P. F. Both protein and blood cells reduce coronary microvascular permeability to macromolecules. Am J Physiol. 1983 Oct;245(4):H698–H706. doi: 10.1152/ajpheart.1983.245.4.H698. [DOI] [PubMed] [Google Scholar]
  45. Michel C. C. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol. 1980 Dec;309:341–355. doi: 10.1113/jphysiol.1980.sp013512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Michel C. C., Levick J. R. Variations in permeability along individually perfused capillaries of the frog mesentery. Q J Exp Physiol Cogn Med Sci. 1977 Jan;62(1):1–10. doi: 10.1113/expphysiol.1977.sp002369. [DOI] [PubMed] [Google Scholar]
  47. Michel C. C., Mason J. C., Curry F. E., Tooke J. E., Hunter P. J. A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci. 1974 Oct;59(4):283–309. doi: 10.1113/expphysiol.1974.sp002275. [DOI] [PubMed] [Google Scholar]
  48. Michel C. C., Phillips M. E. Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. J Physiol. 1987 Jul;388:421–435. doi: 10.1113/jphysiol.1987.sp016622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Michel C. C., Phillips M. E. The effects of bovine serum albumin and a form of cationised ferritin upon the molecular selectivity of the walls of single frog capillaries. Microvasc Res. 1985 Mar;29(2):190–203. doi: 10.1016/0026-2862(85)90016-0. [DOI] [PubMed] [Google Scholar]
  50. Michel C. C., Phillips M. E., Turner M. R. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol. 1985 Mar;360:333–346. doi: 10.1113/jphysiol.1985.sp015620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Michel C. C., Snow G. R., Tasker J. A. Proceedings: A method for measuring the permeability of individually perfused capillaries of the frog mesentery to coloured molecules. J Physiol. 1973 Oct;234(2):25P–26P. [PubMed] [Google Scholar]
  52. Michel C. C. The Malpighi lecture. Vascular permeability--the consequence of Malpighi's hypothesis. Int J Microcirc Clin Exp. 1985;4(3):265–284. [PubMed] [Google Scholar]
  53. Myhre K., Steen J. B. The effect of plasma proteins on the capillary permeability in the rete mirabile of the eel (Anguilla vulgaris L.). Acta Physiol Scand. 1977 Jan;99(1):98–104. doi: 10.1111/j.1748-1716.1977.tb10357.x. [DOI] [PubMed] [Google Scholar]
  54. Nakamura Y., Wayland H. Macromolecular transport in the cat mesentery. Microvasc Res. 1975 Jan;9(1):1–21. doi: 10.1016/0026-2862(75)90046-1. [DOI] [PubMed] [Google Scholar]
  55. Nicolaysen G., Hauge A. Fluid Exchange in the isolated perfused lung. Ann N Y Acad Sci. 1982;384:115–125. doi: 10.1111/j.1749-6632.1982.tb21367.x. [DOI] [PubMed] [Google Scholar]
  56. Olesen S. P., Crone C. Electrical resistance of muscle capillary endothelium. Biophys J. 1983 Apr;42(1):31–41. doi: 10.1016/S0006-3495(83)84366-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  58. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  59. Renkin E. M., Joyner W. L., Sloop C. H., Watson P. D. Influence of venous pressure on plasma-lymph transport in the dog's paw: convective and dissipative mechanisms. Microvasc Res. 1977 Sep;14(2):191–204. doi: 10.1016/0026-2862(77)90018-8. [DOI] [PubMed] [Google Scholar]
  60. Rippe B., Folkow B. Capillary permeability to albumin in normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1977 Sep;101(1):72–83. doi: 10.1111/j.1748-1716.1977.tb05985.x. [DOI] [PubMed] [Google Scholar]
  61. Ryan U. S., Ryan J. W. The endothelial cell surface. Biorheology. 1984;21(1-2):39–56. doi: 10.3233/bir-1984-211-210. [DOI] [PubMed] [Google Scholar]
  62. Schneeberger E. E., Hamelin M. Interaction of serum proteins with lung endothelial glycocalyx: its effect on endothelial permeability. Am J Physiol. 1984 Aug;247(2 Pt 2):H206–H217. doi: 10.1152/ajpheart.1984.247.2.H206. [DOI] [PubMed] [Google Scholar]
  63. Shirahama T., Cohen A. S. The role of mucopolysaccharides in vesicle architecture and endothelial transport. An electron microscope study of myocardial blood vessels. J Cell Biol. 1972 Jan;52(1):198–206. doi: 10.1083/jcb.52.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol. 1973 May;57(2):424–452. doi: 10.1083/jcb.57.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Taylor A. E., Granger D. N., Brace R. A. Analysis of lymphatic protein flux data. I. Estimation of the reflection coefficient and permeability surface area product for total protein. Microvasc Res. 1977 May;13(3):297–313. doi: 10.1016/0026-2862(77)90096-6. [DOI] [PubMed] [Google Scholar]
  67. Turner M. R., Clough G., Michel C. C. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res. 1983 Mar;25(2):205–222. doi: 10.1016/0026-2862(83)90016-x. [DOI] [PubMed] [Google Scholar]
  68. Watson P. D. Effects of blood-free and protein-free perfusion on CFC in the isolated cat hindlimb. Am J Physiol. 1983 Dec;245(6):H911–H919. doi: 10.1152/ajpheart.1983.245.6.H911. [DOI] [PubMed] [Google Scholar]
  69. Weselcouch E. O., Luneau C. J., Williams K. J., Gosselin R. E. The failure of serum albumin to affect capillary permeability in the isolated rabbit heart. Microvasc Res. 1984 Nov;28(3):373–386. doi: 10.1016/0026-2862(84)90008-6. [DOI] [PubMed] [Google Scholar]
  70. Wissig S. L., Williams M. C. Permeability of muscle capillaries to microperoxidase. J Cell Biol. 1978 Feb;76(2):341–359. doi: 10.1083/jcb.76.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Yudilevich D. L., Alvarez O. A. Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am J Physiol. 1967 Aug;213(2):308–314. doi: 10.1152/ajplegacy.1967.213.2.308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES