Abstract
1. Visual transduction in photoreceptors of the ground squirrel, Citellus lateralis, was studied by recording membrane current from individual cones in small pieces of retina. 2. Brief flashes of light produced transient reductions of the dark current; saturating response amplitudes were up to 67 pA. A flash strength of about 11,000 photons microns-2 at lambda max was required to give a half-saturating response. The stimulus-response relation was well fitted by an exponential saturation curve. Responses below 20% of maximum behaved linearly. 3. The response to a dim flash in most cells had a time to peak of 20-30 ms and resembled the impulse response of a series of five low-pass filters. 4. The variance of the dim-flash response amplitude put an upper limit of 80 fA on the size of the single photon response. Estimates based on the effective collecting area suggest the single photon response to be of the order of 10 fA. 5. Flash responses of squirrel cones usually lacked the undershoot observed in primate cones, although in about 1/3 of the cells a small undershoot developed during recording. 6. Background lights slightly shortened the time to peak of the flash response and reduced the integration time. 7. Spectral sensitivity measurements showed two classes of cones with peak sensitivities at about 520 and 435 nm. Rod sensitivity peaked near 500 nm. Spectral univariance was obeyed by all three classes of cells. 8. The shapes of the spectral sensitivity curves of the rod and both types of cones were similar to each other when plotted on a log wave number scale, but differed significantly from similar plots of monkey and human cone spectra. 9. The kinetics and sensitivity of flash responses of the blue- and green-sensitive cones were indistinguishable.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahnelt P. K. Characterization of the color related receptor mosaic in the ground squirrel retina. Vision Res. 1985;25(11):1557–1567. doi: 10.1016/0042-6989(85)90126-9. [DOI] [PubMed] [Google Scholar]
- Baylor D. A., Hodgkin A. L. Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol. 1973 Oct;234(1):163–198. doi: 10.1113/jphysiol.1973.sp010340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Hodgkin A. L., Lamb T. D. The electrical response of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):685–727. doi: 10.1113/jphysiol.1974.sp010731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Matthews G., Yau K. W. Temperature effects on the membrane current of retinal rods of the toad. J Physiol. 1983 Apr;337:723–734. doi: 10.1113/jphysiol.1983.sp014651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Nunn B. J., Schnapf J. L. Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol. 1987 Sep;390:145–160. doi: 10.1113/jphysiol.1987.sp016691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Nunn B. J., Schnapf J. L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984 Dec;357:575–607. doi: 10.1113/jphysiol.1984.sp015518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowmaker J. K., Dartnall H. J., Mollon J. D. Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. J Physiol. 1980 Jan;298:131–143. doi: 10.1113/jphysiol.1980.sp013071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper G. F., Robson J. G. The yellow colour of the lens of the grey squirrel (sciurus carolinensis leucotis). J Physiol. 1969 Aug;203(2):403–410. doi: 10.1113/jphysiol.1969.sp008870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crescitelli F., Pollack J. D. Dichromacy in the antelope ground squirrel. Vision Res. 1972 Oct;12(10):1553–1586. doi: 10.1016/0042-6989(72)90030-2. [DOI] [PubMed] [Google Scholar]
- Dawis S. M. Polynomial expressions of pigment nomograms. Vision Res. 1981;21(9):1427–1430. doi: 10.1016/0042-6989(81)90250-9. [DOI] [PubMed] [Google Scholar]
- Ebrey T. G., Honig B. New wavelength dependent visual pigment nomograms. Vision Res. 1977;17(1):147–151. doi: 10.1016/0042-6989(77)90213-9. [DOI] [PubMed] [Google Scholar]
- Greenberg A. D., Honig B., Ebrey T. G. Wavelength dependence of the bandwidths of visual pigment spectra. Nature. 1975 Oct 30;257(5529):823–824. doi: 10.1038/257823a0. [DOI] [PubMed] [Google Scholar]
- Gur M., Purple R. L. Retinal ganglion cell activity in the ground squirrel under halothane anesthesia. Vision Res. 1978;18(1):1–14. doi: 10.1016/0042-6989(78)90069-x. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H., Fisher S. K., Anderson D. H., Silverman M. S. Scotopic and photopic vision in the California ground squirrel: physiological and anatomical evidence. J Comp Neurol. 1976 Jan 15;165(2):209–227. doi: 10.1002/cne.901650207. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. Spectral sensitivity and colour vision in the ground-dwelling sciurids: results from golden mantled ground squirrels and comparisons for five species. Anim Behav. 1978 May;26(2):409–421. doi: 10.1016/0003-3472(78)90058-1. [DOI] [PubMed] [Google Scholar]
- Lamb T. D., Matthews H. R., Torre V. Incorporation of calcium buffers into salamander retinal rods: a rejection of the calcium hypothesis of phototransduction. J Physiol. 1986 Mar;372:315–349. doi: 10.1113/jphysiol.1986.sp016011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
- Long K. O., Fisher S. K. The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J Comp Neurol. 1983 Dec 10;221(3):329–340. doi: 10.1002/cne.902210308. [DOI] [PubMed] [Google Scholar]
- MacNichol E. F., Jr A unifying presentation of photopigment spectra. Vision Res. 1986;26(9):1543–1556. doi: 10.1016/0042-6989(86)90174-4. [DOI] [PubMed] [Google Scholar]
- Michael C. R. Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. 3. Opponent color units. J Neurophysiol. 1968 Mar;31(2):268–282. doi: 10.1152/jn.1968.31.2.268. [DOI] [PubMed] [Google Scholar]
- Naka K. I., Rushton W. A. S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol. 1966 Aug;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepe I. M., Panfoli I., Cugnoli C. Guanylate cyclase in rod outer segments of the toad retina. Effect of light and Ca2+. FEBS Lett. 1986 Jul 14;203(1):73–76. doi: 10.1016/0014-5793(86)81439-9. [DOI] [PubMed] [Google Scholar]
- Raisanen J., Dawis S. M. A reweighting of receptor mechanisms in the ground squirrel retina: PIII and B-wave spectral sensitivity functions. Brain Res. 1983 Jul 4;270(2):311–318. doi: 10.1016/0006-8993(83)90605-4. [DOI] [PubMed] [Google Scholar]
- Schnapf J. L., Kraft T. W., Baylor D. A. Spectral sensitivity of human cone photoreceptors. 1987 Jan 29-Feb 4Nature. 325(6103):439–441. doi: 10.1038/325439a0. [DOI] [PubMed] [Google Scholar]
- Schnapf J. L., McBurney R. N. Light-induced changes in membrane current in cone outer segments of tiger salamander and turtle. Nature. 1980 Sep 18;287(5779):239–241. doi: 10.1038/287239a0. [DOI] [PubMed] [Google Scholar]
- West R. W., Dowling J. E. Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. J Comp Neurol. 1975 Feb 15;159(4):439–460. doi: 10.1002/cne.901590402. [DOI] [PubMed] [Google Scholar]
- Yolton R. L., Yolton D. P., Renz J., Jacobs G. H. Preretinal absorbance in sciurid eyes. J Mammal. 1974 Feb;55(1):14–20. [PubMed] [Google Scholar]