Abstract
1. The effects of the sulphydryl-complexing reagent p-chloro-mercuriphenyl sulphonate (pCMPS) on membrane voltage and electrical conductance were studied on the isolated frog lens. 2. At low concentrations (0.1-50 microM) pCMPS induced a rapid and graded hyperpolarization of the lens membrane potential which saturated at -97 mV. 3. The lens conductance also showed a graded increase, but the initial changes were apparent only at concentrations above 1 microM. 4. Decreasing the external potassium concentration from 2.5 to 0.5 mM had little effect on the membrane potential in the absence of pCMPS, but increased the voltage from -97 to -110 mV when pCMPS was present. 5. Quinine (300 microM) had no effect when added in control solution, but depolarized the membrane potential and decreased the conductance when added to a pCMPS-treated preparation. 6. These data suggest that pCMPS activates voltage-sensitive potassium channels that are quiescent at the frog resting potential in control solution. 7. At pCMPS concentrations greater than or equal to 100 microM, the initial hyperpolarization is followed by a marked but slow depolarization of the membrane potential and a further increase in lens conductance. These data suggest that non-specific cation channels are activated in this case. 8. Cysteine (5 mM) added to a pCMPS-treated lens leads to a rapid recovery of membrane potential and conductance to near their resting values whether the lens had previously been exposed to low or high concentrations of pCMPS. 9. All of these changes in lens voltage and conductance occurred without apparent alteration in the lens internal sulphydryl content.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benos D. J., Mandel L. J., Simon S. A. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: evidence for separate sites. J Membr Biol. 1980 Sep 30;56(2):149–158. doi: 10.1007/BF01875966. [DOI] [PubMed] [Google Scholar]
- Cooper K. E., Tang J. M., Rae J. L., Eisenberg R. S. A cation channel in frog lens epithelia responsive to pressure and calcium. J Membr Biol. 1986;93(3):259–269. doi: 10.1007/BF01871180. [DOI] [PubMed] [Google Scholar]
- Delamere N. A., Duncan G. A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses. J Physiol. 1977 Oct;272(1):167–186. doi: 10.1113/jphysiol.1977.sp012039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deuticke B., Poser B., Lütkemeier P., Haest C. W. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide. Biochim Biophys Acta. 1983 Jun 10;731(2):196–210. doi: 10.1016/0005-2736(83)90009-3. [DOI] [PubMed] [Google Scholar]
- Duncan G., Patmore L., Pynsent P. B. Impedance of the amphibian lens. J Physiol. 1981 Mar;312:17–27. doi: 10.1113/jphysiol.1981.sp013613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan G. Relative permeabilities of the lens membranes to sodium and potassium. Exp Eye Res. 1969 Jul;8(3):315–325. doi: 10.1016/s0014-4835(69)80045-x. [DOI] [PubMed] [Google Scholar]
- Duncan G. The site of the ion restricting membranes in the toad lens. Exp Eye Res. 1969 Oct;8(4):406–412. doi: 10.1016/s0014-4835(69)80006-0. [DOI] [PubMed] [Google Scholar]
- Epstein D. L., Kinoshita J. H. The effect of diamide on lens glutathione and lens membrane function. Invest Ophthalmol. 1970 Aug;9(8):629–638. [PubMed] [Google Scholar]
- Giblin F. J., Chakrapani B., Reddy V. N. Glutathione and lens epithelial function. Invest Ophthalmol. 1976 May;15(5):381–393. [PubMed] [Google Scholar]
- Gottlieb G. P., Turnheim K., Frizzell R. A., Schultz S. G. P-chloromercuribenzene sulfonate blocks and reverses the effect of amiloride on sodium transport across rabbit colon in vitro. Biophys J. 1978 Apr;22(1):125–129. doi: 10.1016/S0006-3495(78)85477-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hightower K. R. Superficial membrane -SH groups inaccessible by intracellular GSH. Curr Eye Res. 1986 Jun;5(6):421–427. doi: 10.3109/02713688609015110. [DOI] [PubMed] [Google Scholar]
- Jacob T. J., Bangham J. A., Duncan G. Characterization of a cation channel on the apical surface of the frog lens epithelium. Q J Exp Physiol. 1985 Jul;70(3):403–421. doi: 10.1113/expphysiol.1985.sp002925. [DOI] [PubMed] [Google Scholar]
- Kern H. L., Ingalls L. K., Weiner B. C., Zolot S. Patterns in effects of sulfhydryl reagents on transport in bovine lens. Curr Eye Res. 1984 Dec;3(12):1373–1382. doi: 10.3109/02713688409000832. [DOI] [PubMed] [Google Scholar]
- Kosower N. S., Song K. R., Kosower E. M. Glutathione. IV. Intracellular oxidation and membrane injury. Biochim Biophys Acta. 1969 Oct 7;192(1):23–28. doi: 10.1016/0304-4165(69)90005-1. [DOI] [PubMed] [Google Scholar]
- Lucas V. A., Bassnett S., Duncan G., Stewart S., Croghan P. C. Membrane conductance and potassium permeability of the rat lens. Q J Exp Physiol. 1987 Jan;72(1):81–93. doi: 10.1113/expphysiol.1987.sp003057. [DOI] [PubMed] [Google Scholar]
- Patmore L., Duncan G. Voltage-dependent potassium channels in the amphibian lens membranes: evidence from radiotracer and electrical conductance measurements. Exp Eye Res. 1980 Dec;31(6):637–650. doi: 10.1016/s0014-4835(80)80047-9. [DOI] [PubMed] [Google Scholar]
- Quennedey M. C., Bockaert J., Rouot B. Direct and indirect effects of sulfhydryl blocking agents on agonist and antagonist binding to central alpha 1- and alpha 2-adrenoceptors. Biochem Pharmacol. 1984 Dec 15;33(24):3923–3928. doi: 10.1016/0006-2952(84)90002-9. [DOI] [PubMed] [Google Scholar]
- Sedlak J., Lindsay R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968 Oct 24;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4. [DOI] [PubMed] [Google Scholar]
- Tongia S. K., Pandya K. Tissue sensitivity to acetylcholine, adrenaline, noradrenaline and serotonin and agents acting on sulphydryl groups. Indian J Physiol Pharmacol. 1984 Apr-Jun;28(2):141–144. [PubMed] [Google Scholar]
- Wind B. E., Walsh S., Patterson J. W. Equatorial potassium currents in lenses. Exp Eye Res. 1988 Feb;46(2):117–130. doi: 10.1016/s0014-4835(88)80070-8. [DOI] [PubMed] [Google Scholar]
