Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Nov;405:1–37. doi: 10.1113/jphysiol.1988.sp017319

The supraspinal control of mammalian locomotion.

D M Armstrong 1
PMCID: PMC1190962  PMID: 3076600

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins R. J., Cegnar M. R., Rafuse D. D. Differential effects of lesions of the anterior and posterior sigmoid gyri in cats. Brain Res. 1971 Jul 23;30(2):411–414. doi: 10.1016/0006-8993(71)90092-8. [DOI] [PubMed] [Google Scholar]
  2. Amemiya M., Yamaguchi T. Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci Lett. 1984 Sep 7;50(1-3):91–96. doi: 10.1016/0304-3940(84)90468-3. [DOI] [PubMed] [Google Scholar]
  3. Amos A., Armstrong D. M., Marple-Horvat D. E. A ladder paradigm for studying skilled and adaptive locomotion in the cat. J Neurosci Methods. 1987 Aug;20(4):323–340. doi: 10.1016/0165-0270(87)90064-1. [DOI] [PubMed] [Google Scholar]
  4. Andersson G., Armstrong D. M. Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol. 1987 Apr;385:107–134. doi: 10.1113/jphysiol.1987.sp016487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Armstrong D. M., Drew T. Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J Physiol. 1984 Jan;346:471–495. doi: 10.1113/jphysiol.1984.sp015036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Armstrong D. M., Drew T. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat. J Physiol. 1985 Oct;367:327–351. doi: 10.1113/jphysiol.1985.sp015827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Armstrong D. M., Drew T. Locomotor-related neuronal discharges in cat motor cortex compared with peripheral receptive fields and evoked movements. J Physiol. 1984 Jan;346:497–517. doi: 10.1113/jphysiol.1984.sp015037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Armstrong D. M., Edgley S. A. Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. J Physiol. 1984 Jul;352:403–424. doi: 10.1113/jphysiol.1984.sp015300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Armstrong D. M., Edgley S. A. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984 Jun;351:411–432. doi: 10.1113/jphysiol.1984.sp015253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Armstrong D. M., Edgley S. A., Lidierth M. Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J Physiol. 1988 Jun;400:405–414. doi: 10.1113/jphysiol.1988.sp017128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Armstrong D. M. Functional significance of connections of the inferior olive. Physiol Rev. 1974 Apr;54(2):358–417. doi: 10.1152/physrev.1974.54.2.358. [DOI] [PubMed] [Google Scholar]
  12. Armstrong D. M. Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol. 1986;26(4):273–361. doi: 10.1016/0301-0082(86)90021-3. [DOI] [PubMed] [Google Scholar]
  13. Armstrong D. M. The mammalian cerebellum and its contribution to movement control. Int Rev Physiol. 1978;17:239–294. [PubMed] [Google Scholar]
  14. Beloozerova I. N., Sirota M. G. Aktivnost' neironov motosensornoi kory koshki vo vremia estestvennoi khod'by po perekladinam gorizontal'noi lestnitsy. Neirofiziologiia. 1986;18(4):543–545. [PubMed] [Google Scholar]
  15. Beloozerova I. N., Sirota M. G. Aktivnost' neironov motosensornoi kory koshki vo vremia estestvennoi khod'by s pereshagivaniem cherez prepiatstviia. Neirofiziologiia. 1986;18(4):546–549. [PubMed] [Google Scholar]
  16. CHAMBERS W. W., SPRAGUE J. M. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. AMA Arch Neurol Psychiatry. 1955 Dec;74(6):653–680. doi: 10.1001/archneurpsyc.1955.02330180071008. [DOI] [PubMed] [Google Scholar]
  17. Carter M. C., Smith J. L. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat. J Neurophysiol. 1986 Jul;56(1):184–195. doi: 10.1152/jn.1986.56.1.184. [DOI] [PubMed] [Google Scholar]
  18. Contamin F. Sections médullaires incomplètes et locomotion chez le chat. Bull Acad Natl Med. 1983 Sep-Oct;167(7):727–730. [PubMed] [Google Scholar]
  19. Drew T., Dubuc R., Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol. 1986 Feb;55(2):375–401. doi: 10.1152/jn.1986.55.2.375. [DOI] [PubMed] [Google Scholar]
  20. Drew T., Rossignol S. Phase-dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats. J Neurophysiol. 1984 Oct;52(4):653–675. doi: 10.1152/jn.1984.52.4.653. [DOI] [PubMed] [Google Scholar]
  21. Eccles J. C. The cerebellum as a computer: patterns in space and time. J Physiol. 1973 Feb;229(1):1–32. doi: 10.1113/jphysiol.1973.sp010123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Edwards S. B. Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol. 1975 Jun 1;161(3):341–358. doi: 10.1002/cne.901610306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eidelberg E. Consequences of spinal cord lesions upon motor function, with special reference to locomotor activity. Prog Neurobiol. 1981;17(3):185–202. doi: 10.1016/0301-0082(81)90013-7. [DOI] [PubMed] [Google Scholar]
  24. Eidelberg E., Story J. L., Meyer B. L., Nystel J. Stepping by chronic spinal cats. Exp Brain Res. 1980;40(3):241–246. doi: 10.1007/BF00237787. [DOI] [PubMed] [Google Scholar]
  25. Eidelberg E., Walden J. G., Nguyen L. H. Locomotor control in macaque monkeys. Brain. 1981 Dec;104(Pt 4):647–663. doi: 10.1093/brain/104.4.647-a. [DOI] [PubMed] [Google Scholar]
  26. Eidelberg E., Yu J. Effects of corticospinal lesions upon treadmill locomotion by cats. Exp Brain Res. 1981;43(1):101–103. doi: 10.1007/BF00238815. [DOI] [PubMed] [Google Scholar]
  27. Forssberg H., Grillner S., Halbertsma J., Rossignol S. The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand. 1980 Mar;108(3):283–295. doi: 10.1111/j.1748-1716.1980.tb06534.x. [DOI] [PubMed] [Google Scholar]
  28. Forssberg H., Grillner S., Halbertsma J. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand. 1980 Mar;108(3):269–281. doi: 10.1111/j.1748-1716.1980.tb06533.x. [DOI] [PubMed] [Google Scholar]
  29. Forssberg H. Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol. 1979 Jul;42(4):936–953. doi: 10.1152/jn.1979.42.4.936. [DOI] [PubMed] [Google Scholar]
  30. Garcia-Rill E., Skinner R. D., Fitzgerald J. A. Activity in the mesencephalic locomotor region during locomotion. Exp Neurol. 1983 Dec;82(3):609–622. doi: 10.1016/0014-4886(83)90084-5. [DOI] [PubMed] [Google Scholar]
  31. Garcia-Rill E., Skinner R. D., Gilmore S. A., Owings R. Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull. 1983 Jan;10(1):63–71. doi: 10.1016/0361-9230(83)90076-x. [DOI] [PubMed] [Google Scholar]
  32. Garcia-Rill E. The basal ganglia and the locomotor regions. Brain Res. 1986 Mar;396(1):47–63. [PubMed] [Google Scholar]
  33. Giuffrida R., Li Volsi G., Pantò M. R., Perciavalle V., Sapienza S., Urbano A. Single muscle organization of interposito-rubral projections. Exp Brain Res. 1980;39(3):261–267. doi: 10.1007/BF00237115. [DOI] [PubMed] [Google Scholar]
  34. Grillner S., Wallén P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci. 1985;8:233–261. doi: 10.1146/annurev.ne.08.030185.001313. [DOI] [PubMed] [Google Scholar]
  35. Iakhina I. A., Piliavskii A. I., Bulgakova N. V. Issledovanie razlichnykh lokomotornykh dvizhenii u krys. Neirofiziologiia. 1985;17(2):183–189. [PubMed] [Google Scholar]
  36. Jordan L. M., Pratt C. A., Menzies J. E. Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res. 1979 Nov 9;177(1):204–207. doi: 10.1016/0006-8993(79)90933-8. [DOI] [PubMed] [Google Scholar]
  37. Kim J. H., Wang J. J., Ebner T. J. Climbing fiber afferent modulation during treadmill locomotion in the cat. J Neurophysiol. 1987 Mar;57(3):787–802. doi: 10.1152/jn.1987.57.3.787. [DOI] [PubMed] [Google Scholar]
  38. Lou J. S., Bloedel J. R. The responses of simultaneously recorded Purkinje cells to the perturbations of the step cycle in the walking ferret: a study using a new analytical method--the real-time postsynaptic response (RTPR). Brain Res. 1986 Feb 19;365(2):340–344. doi: 10.1016/0006-8993(86)91646-x. [DOI] [PubMed] [Google Scholar]
  39. Lundberg A., Phillips C. G. T. Graham Brown's film on locomotion in the decerebrate cat. J Physiol. 1973 Jun;231(2):90P–91P. [PubMed] [Google Scholar]
  40. Matsukawa K., Udo M. Responses of cerebellar Purkinje cells to mechanical perturbations during locomotion of decerebrate cats. Neurosci Res. 1985 Jun;2(5):393–398. doi: 10.1016/0168-0102(85)90049-5. [DOI] [PubMed] [Google Scholar]
  41. Miller S., Van Der Burg J., Van Der Meché F. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 1975 Jun 27;91(2):217–237. doi: 10.1016/0006-8993(75)90544-2. [DOI] [PubMed] [Google Scholar]
  42. Miller S., Van Der Burg J., Van Der Meché F. Locomotion in the cat: basic programmes of movement. Brain Res. 1975 Jun 27;91(2):239–253. doi: 10.1016/0006-8993(75)90545-4. [DOI] [PubMed] [Google Scholar]
  43. Orlovsky G. N. Activity of vestibulospinal neurons during locomotion. Brain Res. 1972 Nov 13;46:85–98. doi: 10.1016/0006-8993(72)90007-8. [DOI] [PubMed] [Google Scholar]
  44. Orlovsky G. N. The effect of different descending systems on flexor and extensor activity during locomotion. Brain Res. 1972 May 26;40(2):359–371. doi: 10.1016/0006-8993(72)90139-4. [DOI] [PubMed] [Google Scholar]
  45. Palmer C. I., Marks W. B., Bak M. J. The responses of cat motor cortical units to electrical cutaneous stimulation during locomotion and during lifting, falling and landing. Exp Brain Res. 1985;58(1):102–116. doi: 10.1007/BF00238958. [DOI] [PubMed] [Google Scholar]
  46. Perciavalle V., Santangelo F., Sapienza S., Savoca F., Urbano A. Motor effects produced by microstimulation of brachium pontis in the cat. Brain Res. 1977 May 13;126(3):557–562. doi: 10.1016/0006-8993(77)90608-4. [DOI] [PubMed] [Google Scholar]
  47. Perciavalle V., Santangelo F., Sapienza S., Serapide M. F., Urbano A. Direct afferents to interpositus nucleus responsible for triggering movement. Brain Res. 1979 Nov 16;177(2):367–372. doi: 10.1016/0006-8993(79)90787-x. [DOI] [PubMed] [Google Scholar]
  48. Perciavalle V., Santangelo F., Sapienza S., Serapide M. F., Urbano A. Motor responses evoked by microstimulation of restiform body in the cat. Exp Brain Res. 1978 Oct 13;33(2):241–255. doi: 10.1007/BF00238063. [DOI] [PubMed] [Google Scholar]
  49. Russell D. F., Zajac F. E. Effects of stimulating Deiters' nucleus and medial longitudinal fasciculus on the timing of the fictive locomotor rhythm induced in cats by DOPA. Brain Res. 1979 Nov 30;177(3):588–592. doi: 10.1016/0006-8993(79)90478-5. [DOI] [PubMed] [Google Scholar]
  50. Shapovalov A. I. Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol. 1975;72:1–54. doi: 10.1007/BFb0031545. [DOI] [PubMed] [Google Scholar]
  51. Shimamura M., Kogure I. Discharge patterns of reticulospinal neurons corresponding with quadrupedal leg movements in thalamic cats. Brain Res. 1983 Jan 31;260(1):27–34. doi: 10.1016/0006-8993(83)90761-8. [DOI] [PubMed] [Google Scholar]
  52. Shimamura M., Kogure I., Wada S. Reticular neuron activities associated with locomotion in thalamic cats. Brain Res. 1982 Jan 7;231(1):51–62. doi: 10.1016/0006-8993(82)90006-3. [DOI] [PubMed] [Google Scholar]
  53. Smith J. L., Smith L. A., Zernicke R. F., Hoy M. Locomotion in exercised and nonexercised cats cordotomized at two or twelve weeks of age. Exp Neurol. 1982 May;76(2):393–413. doi: 10.1016/0014-4886(82)90217-5. [DOI] [PubMed] [Google Scholar]
  54. Steeves J. D., Jordan L. M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 1984 Jul 30;307(1-2):263–276. doi: 10.1016/0006-8993(84)90480-3. [DOI] [PubMed] [Google Scholar]
  55. Steeves J. D., Jordan L. M. Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci Lett. 1980 Dec;20(3):283–288. doi: 10.1016/0304-3940(80)90161-5. [DOI] [PubMed] [Google Scholar]
  56. Steeves J. D., Schmidt B. J., Skovgaard B. J., Jordan L. M. Effect of noradrenaline and 5-hydroxytryptamine depletion on locomotion in the cat. Brain Res. 1980 Mar 10;185(2):349–362. doi: 10.1016/0006-8993(80)91073-2. [DOI] [PubMed] [Google Scholar]
  57. Trott J. R., Armstrong D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region. Exp Brain Res. 1987;66(2):318–338. doi: 10.1007/BF00243308. [DOI] [PubMed] [Google Scholar]
  58. Udo M., Kamei H., Matsukawa K., Tanaka K. Interlimb coordination in cat locomotion investigated with perturbation. II. Correlates in neuronal activity of Deiter's cells of decerebrate walking cats. Exp Brain Res. 1982;46(3):438–447. doi: 10.1007/BF00238638. [DOI] [PubMed] [Google Scholar]
  59. Udo M., Matsukawa K., Kamei H. Effects of partial cooling of cerebellar cortex at lobules V and IV of the intermediate part in the decerebrate walking cats under monitoring vertical floor reaction forces. Brain Res. 1979 Jan 19;160(3):559–564. doi: 10.1016/0006-8993(79)91087-4. [DOI] [PubMed] [Google Scholar]
  60. Udo M., Matsukawa K., Kamei H. Hyperflexion and changes in interlimb coordination of locomotion induced by cooling of the cerebellar intermediate cortex in normal cats. Brain Res. 1979 Apr 27;166(2):405–408. doi: 10.1016/0006-8993(79)90228-2. [DOI] [PubMed] [Google Scholar]
  61. Udo M., Matsukawa K., Kamei H., Minoda K., Oda Y. Simple and complex spike activities of Purkinje cells during locomotion in the cerebellar vermal zones of decerebrate cats. Exp Brain Res. 1981;41(3-4):292–300. doi: 10.1007/BF00238886. [DOI] [PubMed] [Google Scholar]
  62. Udo M., Matsukawa K., Kamei H., Oda Y. Cerebellar control of locomotion: effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J Neurophysiol. 1980 Jul;44(1):119–134. doi: 10.1152/jn.1980.44.1.119. [DOI] [PubMed] [Google Scholar]
  63. Udo M., Oda Y., Tanaka K., Horikawa J. Cerebellar control of locomotion investigated in cats: discharges from Deiters' neurones, EMG and limb movements during local cooling of the cerebellar cortex. Prog Brain Res. 1976;44:445–459. doi: 10.1016/S0079-6123(08)60751-7. [DOI] [PubMed] [Google Scholar]
  64. Wetzel M. C., Stuart D. G. Ensemble characteristics of cat locomotion and its neural control. Prog Neurobiol. 1976;7(1):1–98. doi: 10.1016/0301-0082(76)90002-2. [DOI] [PubMed] [Google Scholar]
  65. Wilson V. J. Physiological pathways through the vestibular nuclei. Int Rev Neurobiol. 1972;15:27–81. doi: 10.1016/s0074-7742(08)60328-1. [DOI] [PubMed] [Google Scholar]
  66. Yu J., Eidelberg E. Recovery of locomotor function in cats after localized cerebellar lesions. Brain Res. 1983 Aug 22;273(1):121–131. doi: 10.1016/0006-8993(83)91100-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES