Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Nov;405:397–419. doi: 10.1113/jphysiol.1988.sp017339

Characterization of membrane currents in dissociated adult rat pineal cells.

L G Aguayo 1, F F Weight 1
PMCID: PMC1190982  PMID: 2855641

Abstract

1. Membrane currents, particularly the outward components, were studied in pineal cells acutely dissociated from adult rats using the whole-cell variant of the patch-clamp technique. 2. In current clamp, outward constant current elicited a transient graded depolarizing response. A sustained membrane rectification developed within 20 ms; this phenomenon was reduced in cells internally dialysed with 120 mM-CsCl. 3. Study of the membrane current revealed the existence of a transient and a delayed outward current. These currents were virtually eliminated when the cell was internally dialysed with CsCl. 4. The delayed outward current, isolated from a holding potential of -50 mV, activated at potentials near -20 mV, reached a steady-state current amplitude within 60 ms and had little or no decay during steps up to 400 ms in duration. This component was reduced by 80% or more with the addition of 5 mM-TEA. 5. From -100 mV, the transient outward current reached a peak within 15 ms and decayed with a single-exponential time course. The mean decay time constant was 66 +/- 10 ms (at -33 mV) and it showed little voltage sensitivity. This current, which activated at potentials positive to -60 mV and displayed half-inactivation at -76 +/- 8 mV, was reduced by 50% with the addition of 5 mM-4-AP (4-amino-pyridine). 6. In the presence of external Ca2+, the current-voltage relationship for the delayed current did not display a region of negative-slope conductance (N-shape). Increasing the intracellular ionized Ca2+ concentration by varying the Ca-EGTA buffer ratio did not alter the dependence of the current on the membrane potential. 7. Block of outward currents with internal Cs+ revealed a small (less than 90 pA) inward Ca2+ current when the external Ca2+ concentration was increased to 10 mM. From a holding potential of -50 mV, it had a threshold at -30 mV and peaked at +5 mV. Evidence for an inward Na+ current was not obtained. 8. We conclude that acutely dissociated pineal cells display two distinct K+ currents: (i) a slowly activating, sustained current similar to the delayed rectifier (IK); and (ii) a transient A-current (IA). At normal Ca2+ concentrations, no macroscopic Ca2+-activated outward current was observed.

Full text

PDF
397

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Lopez-Barneo J. External calcium ions are required for potassium channel gating in squid neurons. Science. 1987 May 8;236(4802):712–714. doi: 10.1126/science.2437654. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Matteson D. R. The role of calcium ions in the closing of K channels. J Gen Physiol. 1986 May;87(5):817–832. doi: 10.1085/jgp.87.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bader C. R., Bertrand D., Dupin E. Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest. J Physiol. 1985 Sep;366:129–151. doi: 10.1113/jphysiol.1985.sp015789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barish M. E. Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol. 1986 Jun;375:229–250. doi: 10.1113/jphysiol.1986.sp016114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belluzzi O., Sacchi O., Wanke E. A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions. J Physiol. 1985 Jan;358:91–108. doi: 10.1113/jphysiol.1985.sp015542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belluzzi O., Sacchi O., Wanke E. Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage clamp. J Physiol. 1985 Jan;358:109–129. doi: 10.1113/jphysiol.1985.sp015543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bossu J. L., Feltz A., Thomann J. M. Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch. 1985 Apr;403(4):360–368. doi: 10.1007/BF00589247. [DOI] [PubMed] [Google Scholar]
  8. Connor J. A., Stevens C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971 Feb;213(1):31–53. doi: 10.1113/jphysiol.1971.sp009366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971 Feb;213(1):21–30. doi: 10.1113/jphysiol.1971.sp009365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dubinsky J. M., Oxford G. S. Ionic currents in two strains of rat anterior pituitary tumor cells. J Gen Physiol. 1984 Mar;83(3):309–339. doi: 10.1085/jgp.83.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ebels I., Balemans M. G. Physiological aspects of pineal functions in mammals. Physiol Rev. 1986 Jul;66(3):581–605. doi: 10.1152/physrev.1986.66.3.581. [DOI] [PubMed] [Google Scholar]
  12. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fernandez J. M., Fox A. P., Krasne S. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol. 1984 Nov;356:565–585. doi: 10.1113/jphysiol.1984.sp015483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freschi J. E., Parfitt A. G. Intracellular recordings from pineal cells in tissue culture: membrane properties and response to norepinephrine. Brain Res. 1986 Mar 19;368(2):366–370. doi: 10.1016/0006-8993(86)90583-4. [DOI] [PubMed] [Google Scholar]
  15. Gallacher D. V., Morris A. P. A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. J Physiol. 1986 Apr;373:379–395. doi: 10.1113/jphysiol.1986.sp016054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galvan M., Sedlmeir C. Outward currents in voltage-clamped rat sympathetic neurones. J Physiol. 1984 Nov;356:115–133. doi: 10.1113/jphysiol.1984.sp015456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  18. Ikeda S. R., Schofield G. G. Tetrodotoxin-resistant sodium current of rat nodose neurones: monovalent cation selectivity and divalent cation block. J Physiol. 1987 Aug;389:255–270. doi: 10.1113/jphysiol.1987.sp016656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Israel J. M., Kirk C., Vincent J. D. Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J Physiol. 1987 Sep;390:1–22. doi: 10.1113/jphysiol.1987.sp016682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Latorre R., Coronado R., Vergara C. K+ channels gated by voltage and ions. Annu Rev Physiol. 1984;46:485–495. doi: 10.1146/annurev.ph.46.030184.002413. [DOI] [PubMed] [Google Scholar]
  21. Lingle C. J., Sombati S., Freeman M. E. Membrane currents in identified lactotrophs of rat anterior pituitary. J Neurosci. 1986 Oct;6(10):2995–3005. doi: 10.1523/JNEUROSCI.06-10-02995.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacDermott A. B., Weight F. F. Action potential repolarization may involve a transient, Ca2+-sensitive outward current in a vertebrate neurone. Nature. 1982 Nov 11;300(5888):185–188. doi: 10.1038/300185a0. [DOI] [PubMed] [Google Scholar]
  23. Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 1981 Jun 11;291(5815):497–500. doi: 10.1038/291497a0. [DOI] [PubMed] [Google Scholar]
  24. Marty A., Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol. 1985 Oct;367:117–141. doi: 10.1113/jphysiol.1985.sp015817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matteson D. R., Armstrong C. M. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 1986 Jan;87(1):161–182. doi: 10.1085/jgp.87.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mayer M. L., Sugiyama K. A modulatory action of divalent cations on transient outward current in cultured rat sensory neurones. J Physiol. 1988 Feb;396:417–433. doi: 10.1113/jphysiol.1988.sp016970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parfitt A., Weller J. L., Klein D. C., Sakai K. K., Marks B. H. Blockade by ouabain or elevated potassium ion concentration of the adrenergic and adenosine cyclic 3',5'-monophosphate-induced stimulation of pineal serotonin N-acetyltransferase activity. Mol Pharmacol. 1975 May;11(3):241–255. [PubMed] [Google Scholar]
  28. Reuss S., Vollrath L. Electrophysiological properties of rat pinealocytes: evidence for circadian and ultradian rhythms. Exp Brain Res. 1984;55(3):455–461. doi: 10.1007/BF00235276. [DOI] [PubMed] [Google Scholar]
  29. Ritchie A. K. Two distinct calcium-activated potassium currents in a rat anterior pituitary cell line. J Physiol. 1987 Apr;385:591–609. doi: 10.1113/jphysiol.1987.sp016509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakai K. K., Marks B. H. Adrenergic effects on pineal cell membrane potential. Life Sci I. 1972 Mar 15;11(6):285–291. doi: 10.1016/0024-3205(72)90231-7. [DOI] [PubMed] [Google Scholar]
  31. Sugden L. A., Sugden D., Klein D. C. Alpha 1-adrenoceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx. J Biol Chem. 1987 Jan 15;262(2):741–745. [PubMed] [Google Scholar]
  32. Zbicz K. L., Weight F. F. Transient voltage and calcium-dependent outward currents in hippocampal CA3 pyramidal neurons. J Neurophysiol. 1985 Apr;53(4):1038–1058. doi: 10.1152/jn.1985.53.4.1038. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES